


Figure 1. Mean Lidocaine Concentrations for Female Rats on Day 17 of Gestation (linear plot)

Time (hr)

Table 1. Mean Plasma Concentrations of Lidocaine in Female Rats on Day 17 of Gestation

|      |                 | Mean Lidocaine Co | ncentration (ng/mL | .)            |
|------|-----------------|-------------------|--------------------|---------------|
| Time | 15 mg/kg        | 30 mg/kg          | 60 mg/kg           | 75 mg/kg      |
| (hr) | Mean ± SD       | Mean ±SD          | Mean ± SD          | Mean ± SD     |
| 0.5  | 1,267 ± 263     | 2,060 ± 104       | 2,336 ± 281        | 3,019 ± 1,078 |
| 1    | $1,249 \pm 177$ | 1,966 ± 54        | 2,788 ± 504        | 2,430 ±554    |
| 2    | 614 ± 135       | $1,305 \pm 333$   | 2,128 ± 271        | 2,397 ± 82    |
| 4    | $248 \pm 106$   | $349 \pm 98$      | $1,169 \pm 294$    | 1,043 ± 525   |
| 8    | $4.55 \pm 0.80$ | 8.35 ± 2.36       | 142 ± 30           | 176 ± 78      |
| 24   | 0               | 0.33 ± 0.57       | 3.62 ± 1.63        | 3.67 ± 3.63   |

n == 3

Table 2. Pharmacokinetic Parameters for Lidocaine for Female Rats on Day 17 of Gestation

| The state of the s | Dose     |          |          |          |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|--|--|--|--|
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15 mg/kg | 30 mg/kg | 60 mg/kg | 75 mg/kg |  |  |  |  |
| C <sub>max</sub> (ng/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,267    | 2,060    | 2,788    | 3.019    |  |  |  |  |
| T <sub>rsex</sub> (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5      | 0.5      | 1        | 0.5      |  |  |  |  |
| AUC <sub>0-24</sub> (ng*hr/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,281    | 5,595    | 11,408   | 11,847   |  |  |  |  |
| r <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9750   | 0.8786   | 0.9725   | 0.9818   |  |  |  |  |
| k <sub>e</sub> (hr¹¹)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8435   | 0.3521   | 0.2846   | 0.2859   |  |  |  |  |
| t <sub>1/2</sub> (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8      | 2.0      | 2.4      | 2.4      |  |  |  |  |

<u>Terminal and necroscopic evaluations: C-section data (implantation sites, pre- and post-implantation loss, etc.)</u>: Macroscopic observations at terminal necropsy mirrored the clinical observations noted in the table above, i.e., limited to scabbing of the skin and sparse hair at the high dose lidocaine and tetracaine groups.

Two of 5 animals in the tetracaine 5 mg/kg/day dams were not pregnant; however, five of five dams in the 10 mg/kg tetracaine group were pregnant. One female in the 75 mg/kg lidocaine group was not pregnant, while one animal died while pregnant.

There were no treatment related abortions, early deliveries, complete resorptions or differences in the number of females with viable fetuses at day 20 of gestation. There were two dams in the vehicle group that had only 2 or 3 implantation sites and one dam in the 15 mg/kg lidocaine group with 2 implantation sites. These values likely contributed to some of the variability within these groups.

There were no significant differences in the mean percent post-implantation loss nonviable fetuses, resorptions (early, late or combined) between groups.

Mean gravid uterine weights in dams treated with 60 and 75 mg/kg lidocaine were increased 80% and 66% over controls (the former being statistically significant). In contrast, there were no significant changes in mean final body weights, adjusted final body weights, weight change from Day 0 or adjusted weight change from day 0 between groups. There were no treatment-related changes in fetal weight (males, females or combined) between treatment groups.

The maternal and developmental observations at the time of uterine examination and fetal observations are summarized in the table below:

| Summary of Maternal and Developmental Observations at Uterine Examination |                                                     |      |       |         |       |       |       |       |       |  |  |
|---------------------------------------------------------------------------|-----------------------------------------------------|------|-------|---------|-------|-------|-------|-------|-------|--|--|
| (# ti                                                                     | (# times observed/total number of animals affected) |      |       |         |       |       |       |       |       |  |  |
| Group                                                                     | Veh                                                 |      | Lid   | locaine |       |       | Tetra | caine | ,     |  |  |
| N                                                                         | 4                                                   | 4    | 5     | 5       | 3     | 5     | 5     | 3     | 5     |  |  |
| Dose (mg/kg)                                                              | 0                                                   | 15   | 30    | 60      | 75    | 1     | 2     | 5     | 10    |  |  |
| Pregnancy index (%)                                                       | 80                                                  | 80   | 100   | 100     | 80    | 100   | 100   | 60    | 100   |  |  |
| Corpora Leutea                                                            | 10.5                                                | 14.8 | 13.6  | 15.2    | 19.3* | 14.0  | 15.8  | 17.7  | 15.2  |  |  |
| Implantation Sites                                                        | 7.3                                                 | 9.8  | 13.2* | 13.6*   | 13.0  | 13.0* | 13.6* | 14.0* | 13.4* |  |  |
| Preimplantation Loss                                                      | 37.3                                                | 36.9 | 2.6   | 9.5     | 30.4  | 6.8   | 12.5  | 18.8  | 11.6  |  |  |
| Viable Fetuses                                                            | 6.8                                                 | 9.5  | 12.8* | 13.2*   | 12.7  | 12.2  | 13.2* | 13.3* | 13.0* |  |  |
| Fetal Sex Ratio                                                           | 51.1                                                | 24.8 | 59.0  | 49.1    | 41.2  | 51.8  | 53.2  | 47.3  | 46.5  |  |  |
| % Post implantation loss                                                  | 14.6                                                | 2.1  | 3.0   | 3.1     | 2.8   | 6.7   | 2.9   | 4.8   | 3.1   |  |  |
| Litter Size                                                               | 6.8                                                 | 9.5  | 12.8  | 13.2*   | 12.7* | 12.2  | 13.2* | 13.3* | 13.0* |  |  |
| Gravid Uterine Wt (g)                                                     | 42.8                                                | 57.5 | 73.2  | 77.4*   | 71.3  | 72.4  | 80.4* | 81.7* | 73.4* |  |  |
| No. Litters Evaluated                                                     | 4                                                   | 4    | 5     | 5       | 3     | 5     | 5     | 3     | 5     |  |  |
| No. Fetuses Evaluated                                                     | 27                                                  | 38   | 64    | 66      | 38    | 61    | 66    | 40    | 65    |  |  |

<u>Offspring (malformations, variations, etc.)</u>: The total number of litters and fetuses evaluated for external malformations and developmental variations are recorded in the table above. There were no external signs of malformations or variations observed at any dose of lidocaine or tetracaine.

### Study title: Pilot Prenatal Developmental Toxicity Study in New Zealand White Rabbits (With Toxicokinetics)

**Key study findings**: Female New Zealand Rabbits were treated with either lidocaine or **tetracaine** on Gestation Day 7 through 20 and the maternal and fetal effects were examined with the following key findings:

- 1. Maternal toxicity to a varying degree was detected following both lidocaine and tetracaine at all doses of both test articles.
- 2. Developmental toxicity was not noted at any dose of either test article.
- 3. There was no effect of either lidocaine or tetracaine on the pregnancy rate, delivery time, or maternal macroscopic pathology.
- 4. There was no evidence for teratogenicity following either lidocaine or tetracaine at doses up to 60 mg/kg and 10 mg/kg, respectively.
- 5. Based upon these findings, dose levels of 1, 5 and 15 mg/kg lidocaine and 1 and 5 mg/kg/day of tetracaine were chosen for the definitive Segment II study in rabbits.

Study no.:

925-013

Volume #, and page #:

Volume 4, Page 1

Conducting laboratory and location:

Date of study initiation:

January 8, 2003

GLP compliance:

Yes

OA reports:

yes (X) no ()

Drug, lot #, and % purity:

Lidocaine base, Lot 811D0013,

Tetracaine base, Batch 721724

Methods

Doses:

Doses of lidocaine of 30, 60, 90 and 120

mg/kg/day were initially attempted, however, the doses were reduced to 15 and 75 mg/kg, respectively due to mortality. Tetracaine doses were 1, 2, 5 or 10 mg/kg.

Species/strain:

White New Zealand Rabbits, female

[Hra: (NZW) SPF]

Number/sex/group:

6 per group

**Route, formulation, volume, and infusion rate:** Subcutaneous, phosphate buffer, volume of 1 ml/kg.

Satellite groups used for toxicokinetics: None

Study design:

Nine groups of six time-mated female rabbits

were administered test article on gestation days 7 to 20 via a subcutaneous injection to the scapular or lumbar regions of the back (see table below).

| Group | Test Article | Dose<br>(mg/kg/day)                                        | Number of Animals               | Mortality           |
|-------|--------------|------------------------------------------------------------|---------------------------------|---------------------|
| l     | Control      | 0                                                          | 6                               | 0                   |
| 2     | Lidocaine    | 30                                                         | 6                               | 0                   |
| 3     | Lidocaine    | 60                                                         | 6                               | 3                   |
| 4     | Lidocaine    | 90 - intended dose,<br>but due to mortality lowered to 15  | 1 at 90 mg/kg<br>5 at 15 mg/kg  | 1 at 90<br>1 at 15  |
| 5     | Lidocaine    | 120 - intended dose,<br>but due to mortality lowered to 75 | 2 at 120 mg/kg<br>4 at 75 mg/kg | 2 at 120<br>4 at 75 |
| 6     | Tetracaine   | 1                                                          | 6                               | 0                   |
| 7     | Tetracaine   | 2                                                          | 6                               | 0                   |
| 8     | Tetracaine   | 5                                                          | 6                               | 0                   |
| 9     | Tetracaine   | 10                                                         | 6                               | 0                   |

#### Parameters and endpoints evaluated:

Mortality and Cage Side Observations: Animals were observed twice daily for mortality and clinical signs, a detailed clinical examination was given daily from Days 7 through 29 of gestation.

**Body Weight and Body Weight Changes:** Body weights were recorded on Days 0, 7, 10, 13, 16, 18, 21, 25 and 29 of gestation. Individual body weight changes were calculated for the following intervals: 0-7, 7-10, 10-13, 13-16, 16-18, 18-21, 21-25, 25-29, 7-21, 21-25, 25-29, 21-29 and 0-29. Adjusted body weight (Day 29 body weight – gravid uterine weight) and adjusted body weight change (Days 0-29 of gestation) were also calculated.

**Food Consumption:** Food consumption was recorded daily and reported on the corresponding body weight intervals.

**Toxicokinetics:** Blood samples were collected on Day 20 of gestation prior to exposure and at 0.5, 1, 2 and 4 hours after treatment. Plasma samples were collected at each of the scheduled times from three animals in each dose group, except a pre-dose sample from a fourth animal. There were no animals surviving in Group 5 (75 or 120 mg/kg/day) on Day 20 of gestation and therefore no toxicokinetic data either. Blood samples were collected into vacutainers with potassium EDTA as anticoagulant and neostigmine, an esterase inhibitor (to prevent the hydrolysis of tetracaine). Levels of lidocaine and tetracaine were determined via liquid chromatography, double mass spectrometry method (LC/MS/MS). Limits of detection were 10 ng/ml and 0.9 ng/ml for lidocaine and tetracaine, respectively.

#### **Postmortem Study Evaluations:**

**Maternal Necropsy:** Complete necropsy was performed on all does. Gross lesions were saved and the carcass was discarded.

Ovarian and Uterine Examinations: On Day 29, each female was euthanized by sodium pentobarbital injection and exsanguination and immediately subjected to cesarean section. The skin was reflected from the ventral midline incision to examine mammary tissue and locate any subcutaneous masses. The abdominal cavity was then opened and the uterus exposed. Location of viable and non-viable fetuses, early and late resorptions, position of the cervix and total implantations were recorded. The number of corpora lutea on each ovary was recorded. The fetuses were removed and the placenta was grossly examined.

**Fetal Examinations:** Fetuses were individually weighed and examined for external malformations and variations. Fetuses with external malformations and or

developmental variations were preserved for possible further examination. All other fetuses were euthanized and discarded.

#### Results

<u>Mortality (dams)</u>: The summary of mortalities following lidocaine treatment is presented in the table below:

| Incidence of Deaths of Rabbits following Lidocaine Treatment |     |     |     |     |     |     |     |  |
|--------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|--|
| Dose                                                         | 0   | 15  | 30  | 60  | 75  | 90  | 120 |  |
| Deaths                                                       | 0/6 | 1/5 | 0/6 | 4/6 | 4/4 | 1/1 | 2/2 |  |

All rabbits treated with tetracaine survived to their scheduled termination.

Clinical signs (dams): A dose of 120 mg/kg day resulted in rapid breathing and marked decreases in activity of the dams to the point of prostration with clonic convulsions in two animals. The animals dosed at 60, 75 and 90 mg/kg exhibited these same signs. Following a dose of 30 mg/kg lidocaine there was decreased activity noted in four animals on a single day with rapid breathing in 3 of 4 animals and 2 animals on most dosing days. One animal treated with 15 mg/kg lidocaine demonstrated decreased activity, prostration, clonic convulsions and rapid breathing.

Body weight (dams): There were test article-related changes in body weight and body weight change at all doses of lidocaine and tetracaine. Body weight gains in the 15, 30 and 60 mg/kg lidocaine group over Days 7 to 21 of gestation were 155, 138 and 43 grams, respectively. This is compared to 270 grams weight in the control animals. Body weight gains in the 1, 2, 5 and 10 mg/kg tetracaine over Days 7 through 21 of gestation were 207, 215, 205 and -108 grams respectively compared to 270 grams weight in the controls.

<u>Food consumption (dams)</u>: Maternal food consumption during gestation was decreased compared to controls at all dose levels of lidocaine during days 7 to 21 of gestation. Food consumption was decreased significantly at the 10 mg/kg/day tetracaine. Food consumption during the pretreatment and posttreatment periods was considered similar for all groups.

#### Toxicokinetics:

APPEARS THIS WAY ON ORIGINAL

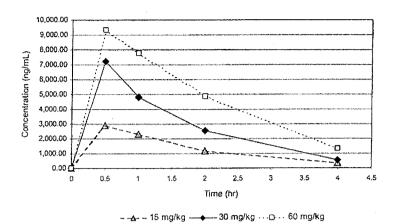



Figure 1. Mean Lidocaine Concentrations for Female Rabbits on Day 20 of Gestation (linear plot)

Table 1. Mean Plasma Concentrations of Lidocaine in Female Rats on Day 20 of Gestation

|           | Lidocaine Concentration (ng/mL) |                   |                   |  |  |  |  |  |  |
|-----------|---------------------------------|-------------------|-------------------|--|--|--|--|--|--|
|           | 15 mg/kg                        | 30 mg/kg          | 60 mg/kg          |  |  |  |  |  |  |
| Time (hr) | Mean ± SD                       | Mean ± SD         | Mean ±SD          |  |  |  |  |  |  |
| 0         | 3.33 ± 6.67*                    | 0                 | 7.35 ± 12.72      |  |  |  |  |  |  |
| 0.5       | $2,928 \pm 348$                 | $7,209 \pm 1,922$ | $9,327 \pm 5,686$ |  |  |  |  |  |  |
| 1         | 2,306 ± 82                      | 4,821 ± 736       | $7,752 \pm 2,908$ |  |  |  |  |  |  |
| 2         | 1,164 ± 131                     | $2,550 \pm 338$   | 4,843 ± 1,954     |  |  |  |  |  |  |
| 4         | $378 \pm 167$                   | 556 ±217          | 1,332 ± 458       |  |  |  |  |  |  |

n = 3, except as noted

### APPEARS THIS WAY ON ORIGINAL

<sup>\*</sup> n = 4

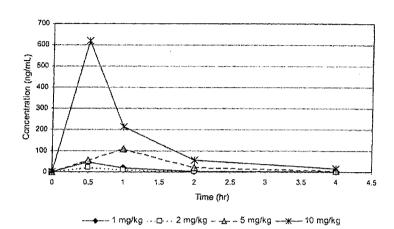



Figure 3. Mean Tetracaine Concentrations for Female Rabbits on Day 20 of Gestation (linear plot)

Table 2. Mean Plasma Concentrations of Tetracaine in Female Rabbits on Day 20 of Gestation

|      | Tetracaine Concentration (ng/mL) |                   |                   |                 |  |  |  |  |  |
|------|----------------------------------|-------------------|-------------------|-----------------|--|--|--|--|--|
| Time | l mg/kg                          | 2 mg∕kg           | 5 mg/kg           | 10 mg/kg        |  |  |  |  |  |
| (hr) | Mean ± SD                        | Mean ±SD          | Mean ±SD          | Mean ±SD        |  |  |  |  |  |
| 0    | 0                                | 0                 | 0                 | 0               |  |  |  |  |  |
| 0.5  | 45.68 ± 35.91                    | $22.78 \pm 20.61$ | $56.95 \pm 29.70$ | 618.30 ± 151.48 |  |  |  |  |  |
| 1    | 19.86 ±22.74                     | 9.68 ± 8.56       | 110.81 ±108.50    | 212.86 ±110.03  |  |  |  |  |  |
| 2    | $3.40 \pm 0.95$                  | 3.91 ±3.40        | 22.54 ± 14.45     | 57.07 ±27.83    |  |  |  |  |  |
| 4    | 1.94 ± 2.18                      | 0.70 ± 0.61       | 7.67 ± 2.01       | 16.11 ±11.29    |  |  |  |  |  |

n = 3 in all cases

# APPEARS THIS WAY ON ORIGINAL

Table 3. Mean Pharmacokinetic Parameters for Lidocaine for Female Rabbits on Day 20 of Gestation

| Lidocaine                          | 15 mg/kg Dose       | 30 mg/kg Dosc       | 60 mg/kg Dose       |
|------------------------------------|---------------------|---------------------|---------------------|
| Parameter                          | Mean ±SD            | Mean ± SD           | Mean ± SD           |
| C <sub>max</sub> (ng/mL)           | 2,928 ± 348         | 7,209 ± 1,922       | 10,703 ± 4,624      |
| T <sub>max</sub> (hr)              | $0.5 \pm 0.0$       | $0.5 \pm 0.0$       | $0.7 \pm 0.3$       |
| AUC <sub>0-24</sub> (ng*hr/mL)     | $8,001 \pm 1,007$   | $16,477 \pm 1,341$  | 28,954 ± 9,675      |
| k <sub>e</sub> (hr <sup>-1</sup> ) | $0.5322 \pm 0.2893$ | $0.7454 \pm 0.2015$ | $0.5384 \pm 0.3029$ |
| t <sub>1/2</sub> (hr)              | 1.8 ± 1.3           | 1.0 ± 0.3           | 1.7 ± 1.2           |

n = 3 in all cases

Table 4. Mean Pharmacokinetic Parameters for Tetracaine for Female Rabbits on Day 20 of Gestation

|                                    | 1 mg/kg Dose  | 2 mg/kg Dose  | 5 mg/kg Dose  | 10 mg/kg Dose     |
|------------------------------------|---------------|---------------|---------------|-------------------|
| Parameter                          | Mean ± SD     | Mean ± SD     | Mean ± SD     | Mean ± SD         |
| C <sub>max</sub> (ng/mL)           | 45.7 ± 35.9   | 22.8 ± 20.6   | 123.2 ± 99.3  | 618.3 ± 151.5     |
| T <sub>max</sub> (hr)              | $0.5 \pm 0.0$ | $0.5 \pm 0.0$ | $0.7 \pm 0.3$ | $0.5 \pm 0.0$     |
| AUC <sub>0-24</sub><br>(ng*hr/mL)  | 59.2 ± 46.0   | 30.5 ± 26.5   | 209.0 ± 56.3  | $683.5 \pm 216.2$ |
| k <sub>e</sub> (hr <sup>-1</sup> ) | 0.6452 *      | 0.8697 *      | 0.6488 *      | 0.8625 ± 0.0887   |
| t <sub>1/2</sub> (hr)              | 1.1*          | 0.8 *         | 1.2 *         | $0.8 \pm 0.1$     |

n = 3, except as noted. SD not calculated for n < 3.

## <u>Terminal and necroscopic evaluations:</u>C-section data (implantation sites, pre- and post-implantation loss, etc.):

Maternal toxicity: The number of corpora lutea, implantation sites, preimplantation loss, viable fetuses, litter size, and resorptions were similar between the control group and the groups treated with lidocaine or tetracaine. There were no viable fetuses at 75 mg/kg/day lidocaine. An increase in post-implantation loss was seen at dose levels of 30 and 60 mg/kg/day lidocaine and 1 mg/kg/day tetracaine. Gravid uterine weights, adjusted Day 29 gestation body weights, and adjusted body weight changes from Day 0 were comparable to controls except for the 60 mg/kg/day for the treated lidocaine and tetracaine groups were

| Summary of Maternal and Developmental Observations at Uterine Examination (# times observed/total number of animals affected) |       |       |       |         |     |       |       |       |       |  |
|-------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|---------|-----|-------|-------|-------|-------|--|
| Group                                                                                                                         | Veh   |       | Lid   | locaine |     |       | Tetra | caine |       |  |
| N ·                                                                                                                           | 6     | 6     | 6     | 6       | 6   | 5     | 5     | 3     | 5     |  |
| Dose (mg/kg)                                                                                                                  | 0     | 15    | 30    | 60      | 75  | 1     | 2     | 5     | 10    |  |
| Pregnancy index (%)                                                                                                           | 100   | 100   | 100   | 100     | 100 | 100   | 100   | 100   | 100   |  |
| No. Died Pregnant                                                                                                             | 0     | 2     | 0     | 3       | 6   | 0     | 0     | 0     | 0     |  |
| No. Abortions                                                                                                                 | 0     | 0     | 0     |         | 0   | 0     | 0     | 0     | 11    |  |
| % Post implantation loss                                                                                                      | 3.60  | 2.78  | 14.58 | 15.66   | NA  | 16.01 | 7.20  | 7.08  | 0     |  |
| Litter Size                                                                                                                   | 9.3   | 7.8   | 7.0   | 9.0     | NA  | 7.3   | 8.8   | 8.7   | 8.4   |  |
| No. Litters Evaluated                                                                                                         | 6     | 4     | 6     | 2       | NA  | 6     | 6     | 6     | 5     |  |
| No. Fetuses Evaluated                                                                                                         | 56    | 31    | 42    | 17      | NA  | 44    | 53    | 52    | 42    |  |
| Mean Fetal Body Wt                                                                                                            | 41.95 | 44.83 | 39.73 | 36.02   | NA  | 42.73 | 40.93 | 43.15 | 45.56 |  |

<sup>\*</sup> n == 2

| <b>Total Malformations</b> |   |   |   |     |    |   |   |   |   |
|----------------------------|---|---|---|-----|----|---|---|---|---|
| No. Litters (%)            | 0 | 0 | 0 | 0   | NA | 0 | 0 | 0 | 0 |
| No. Fetuses (%)            | 0 | 0 | 0 | 0   | NA | 0 | 0 | 0 | 0 |
| Total Variations           |   |   |   |     |    |   |   |   |   |
| No. Litters (%)            | 0 | 0 | 1 | 0   | NA | 0 | 0 | 0 | 0 |
| No. Fetuses (%)            | 0 | 0 | 1 | 0 - | NA | 0 | 0 | 0 | 0 |

NA = not applicable or not available (all animals died prior to scheduled euthanasia.

#### Offspring (malformations, variations, etc.):

**Fetal body weights:** Fetal body weights for the lidocaine and tetracaine groups did not differ statistically from controls. Mean fetal weights at 60 mg/kg/day of lidocaine was lower than controls and thought to be treatment related. Following dosing of 15 mg/kg/day of lidocaine and 10 mg/kg/day of tetracaine, fetal body weight was slightly higher than controls.

**External examinations:** The only external malformation noted in this study was an abnormal flexure in the forelimb and hind limb of a single fetus from 30 mg/kg/day lidocaine group. This abnormality was not considered test-article related.

#### Study title: Study for Effects on Embryo-Fetal Development in Rats

**Key study findings**: The effect of subcutaneous lidocaine (5, 15 and 60 mg/kg/day), **tetracaine** (5 and 10 mg/kg/day) and the **eutectic combination** of the two (10 mg/kg/day each) on the embryo-fetal development of the rat were examined with the following key findings:

- 1. Maternal toxicity was noted at the high doses of lidocaine, tetracaine and the combination, indicating that the study is a valid assessment of the teratogenic potential of these drugs.
- 2. There was no evidence of teratogenicity in any treatment under the conditions of this assay.
- 3. The NOAEL for maternal toxicity was 5 mg/kg/day of tetracaine and 15 mg/kg/day of lidocaine. These doses correspond to 30 and 90 mg/m², on a body surface area basis.
- 4. The NOAEL for developmental effects was 10 mg/kg/day tetracaine, 60 mg/kg/day lidocaine and 10 mg/kg/day each in a eutectic mixture. These doses correspond to 60, 360 and 60/60 mg/m², respectively, on a body surface area basis.

| Conducting laboratory and location: | ************************************** |
|-------------------------------------|----------------------------------------|
| Canduating laboratory and lacation. |                                        |
| Volume #, and page #:               | Volume 5, Page 1                       |
| Study no.:                          | 925-015                                |
|                                     |                                        |

Date of study initiation: February 26, 2003
GLP compliance: Yes
QA reports: yes (X) no ()

Drug, lot #, and % purity: Tetracaine base, Batch # 721724, 1 Lidocaine base, Lot # 811D0013

#### Methods

Doses:

Lidocaine 5, 10 and 60 mg/kg, s.c.

Tetracaine 5 and 10 mg/kg, s.c.

Lidocaine/Tetracaine 10/10 mg/kg, s.c.

Species/strain:

Sprague-Dawley rats '— CD (SD) IGS BR]

Number/sex/group:

25 as outlined in the table below:

| Group Assignment   |                              |                                 |  |  |  |  |
|--------------------|------------------------------|---------------------------------|--|--|--|--|
| Dos <b>e</b> Level |                              |                                 |  |  |  |  |
| Group Number       | (mg/kg/day)                  | Number of Time-mated Female Rat |  |  |  |  |
| 1                  | 0 (Vehicle Control)          | 25                              |  |  |  |  |
| 2                  | 5 (Lidocaine)                | 25                              |  |  |  |  |
| 3                  | 10 (Lidocaine)               | 25                              |  |  |  |  |
| 4                  | 60 (Lidocaine)               | 25                              |  |  |  |  |
| 5                  | 5 (Tetracaine)               | 25                              |  |  |  |  |
| 6                  | 10 (Tetracaine)              | 25                              |  |  |  |  |
| 7                  | 10/10 (Lidocaine/Tetracaine) | 25                              |  |  |  |  |

Route, formulation, volume, and infusion rate: Subcutaneous, vehicle was phosphate buffered saline, pH = 6.0 to 6.2, volume of 1 ml/kg. The dosing formulations were determined to be stable for 14 days when refrigerated via preliminary studies.

Satellite groups used for toxicokinetics: Not completed.

**Study design:** Test article and vehicle control administration began on Day 6 of gestation and continued through to include Day 17 of gestation. Individual doses were based on the most recent body weight. Test article/vehicle was administered subcutaneously in the scapular and lumbar regions of the lower back via a 26-gauge hypodermic needle. Dosing was alternated from left to right.

#### Parameters and endpoints evaluated:

Mortality and Clinical Signs: Animals were observed twice daily for morbidity, mortality, signs of injury and availability of food and water. Detailed clinical examinations were conducted daily from Days 6 through 20 of gestation.

Body Weights: Body weights were recorded on Days 0, 6, 9, 12, 15, 18 and 20 of gestation. Body weight changes were calculated for the following gestation day intervals: 0-6, 6-9, 9-12, 12-15, 15-18, 18-20, 6-20 and 0-20. Adjusted body weight (Day 20 gestation body weight minus gravid uterine weight) and adjusted body weight change (Days 0-20 of gestation) were also calculated.

Food Consumption: Food consumption was recorded on the corresponding body weight days and calculated for the same intervals as body weight change.

<u>Post Mortem Evaluations</u>: On Day 20, Dams were sacrificed by carbon dioxide inhalation and immediately subjected to cesarean section. Maternal necropsy, ovarian and uterine examinations were completed. The following were recorded: gravid uterine weight, location of viable and nonviable fetuses, early and late resorptions, position of cervix, total number of implantations, number or corpora lutea on each ovary.

<u>Teratogenic Examinations</u>: Fetuses were individually weighed, sexed, tagged and examined for external malformations and variations. Fetuses were euthanized via intraperitoneal injection of sodium barbital. Approximately half were placed in Bouin's

solution, the remaining in alcohol. Skeletal malformations and developmental variations were noted and classified as such under the supervision of a developmental toxicologist.

Statistical analysis: Statistical analysis was conducted according to the following table:

| Statistical Anal                                   | Statistical Analysis Methods      |  |  |  |  |
|----------------------------------------------------|-----------------------------------|--|--|--|--|
| Endpoint                                           | Analysis                          |  |  |  |  |
| Parental In-life Data                              |                                   |  |  |  |  |
| Gestation Body Weights                             | Group Pair-wise Comparisons       |  |  |  |  |
| Gestation Body Weight Changes                      | Group Pair-wise Comparisons       |  |  |  |  |
| Gestation Food Consumption                         | Group Pair-wise Comparisons       |  |  |  |  |
| Adjusted Body Weights                              | Group Pair-wise Comparisons       |  |  |  |  |
| Adjusted Body Weight Changes                       | Group Pair-wise Comparisons       |  |  |  |  |
| (Days 0-20)                                        | •                                 |  |  |  |  |
| Fertility Indices                                  |                                   |  |  |  |  |
| Pregnancy Index                                    | Fisher's Exact Test               |  |  |  |  |
| Uterine and Ovarian Exam                           |                                   |  |  |  |  |
| Gravid Uterine Weights                             | Group Pair-wise Comparisons       |  |  |  |  |
| Corpora Lutea/dam                                  | Group Pair-wise Comparisons       |  |  |  |  |
| Total Implantations/dam                            | Group Pair-wise Comparisons       |  |  |  |  |
| Fetal Sex Ratio (% males/litter)                   | Arcsin-Square-Root Transformation |  |  |  |  |
| Litter Size/dam                                    | Group Pair-wise Comparisons       |  |  |  |  |
| Viable Fetuses/dam                                 | Group Pair-wise Comparisons       |  |  |  |  |
| Nonviable Fetuses /dam                             | Descriptive Statistics            |  |  |  |  |
| Total Number Resorptions/dam                       | Group Pair-wise Comparisons       |  |  |  |  |
| Number Early Resorptions/dam                       | Group Pair-wise Comparisons       |  |  |  |  |
| Number Late Resorptions/dam                        | Group Pair-wise Comparisons       |  |  |  |  |
| % Preimplantation Loss (mean/dam)                  | Arcsin-Square-Root Transformation |  |  |  |  |
| % Postimplantation Loss (mean/dam)                 | Arcsin-Square-Root Transformation |  |  |  |  |
| Mean Fetal Body Weights                            | Covariate Analysis                |  |  |  |  |
| Malformations by finding and exam type             | Fisher's Exact Test               |  |  |  |  |
| (external, visceral, and skeletal) - litter        |                                   |  |  |  |  |
| incidence <sup>a</sup>                             |                                   |  |  |  |  |
| Variations by finding and exam type                | Fisher's Exact Test               |  |  |  |  |
| (external, visceral, and skeletal) - litter        | 90-                               |  |  |  |  |
| incidence                                          |                                   |  |  |  |  |
| Total Malformations (external, visceral, and       | Fisher's Exact Test               |  |  |  |  |
| skeletal combined) – litter incidence <sup>a</sup> |                                   |  |  |  |  |

<sup>&</sup>lt;sup>a</sup>Fetal and litter incidences are reported, but only the litter incidences were statistically analyzed.

#### Results

Mortality (dams): Five pregnant rats treated with 10 mg/kg tetracaine were found dead on Days 6, 8, 10, 10 and 12 of gestation. These deaths were considered to be test article related.

<u>Clinical signs (dams)</u>: Lidocaine treatment-related clinical findings were limited to prostration in one treated dam at the high dose on one occasion. In addition, dams in the high dose lidocaine group were frequently described as having hair loss or sparse hair and scabbed areas of the skin on the dorsal surface. Behavioral observations in the tetracaine treatment group included decreased activity and convulsions following 10 mg/kg doses.

| Summary of Clinical Observations in the Dams        |         |           |            |          |  |  |  |
|-----------------------------------------------------|---------|-----------|------------|----------|--|--|--|
| (# times observed/total number of animals affected) |         |           |            |          |  |  |  |
| Group                                               | Vehicle | Lidocaine | Tetracaine | Lido/Tet |  |  |  |

| N                    | -25 | 25  | 25  | 25     | 25   | 24     | 25     |
|----------------------|-----|-----|-----|--------|------|--------|--------|
| Dose (mg/kg)         | 0   | 5   | 15  | 60     | 5    | 10     | 10/10  |
| Behavior             |     |     |     |        |      |        |        |
| Activity Decreased   | 0/0 | 0/0 | 0/0 | 0/0    | 0/0  | 158/23 | 195/25 |
| Behavior aggressive  | 0/0 | 0/0 | 0/0 | 0/0    | 0/0  | 1/1    | 1/1    |
| Convulsions – clonic | 0/0 | 0/0 | 0/0 | 0/0    | 0/0  | 3/3    | 1/1    |
| Licking excessive    | 0/0 | 0/0 | 0/0 | 0/0    | 0/0  | 1/1    | 0/0    |
| Prostration          | 0/0 | 0/0 | 0/0 | 1/1    | 0/0  | 125/23 | 186/25 |
| Salivation           | 0/0 | 0/0 | 0/0 | 0/0    | 0/0  | 2/2    | 0/0    |
| Skin*                |     |     |     |        |      |        |        |
| Hair sparse, lumbar  | 0/0 | 0/0 | 1/1 | 49/9   | 0/0  | 0/0    | 3/1    |
| Hair absent, dorsal  | 0/0 | 0/0 | 0/0 | 36/4   | 0/0  | 0/0    | 0/0    |
| Scabbed area, dorsal | 0/0 | 0/0 | 0/0 | 127/15 | 12/2 | 39/7   | 137/13 |
| Respiration          |     |     |     |        |      |        |        |
| Rapid breathing      | 0/0 | 0/0 | 0/0 | 0/0    | 0/0  | 121/23 | 156/25 |

<sup>\*</sup> Only selected body regions are described here. The study report breaks down a large number of regions which were not deemed necessary to reproduce here.

<u>Body weight (dams)</u>: Occasional decreases in body weight gain were observed following treatment with 10 mg/kg of the eutectic mixture of lidocaine/tetracaine during some of the internals. There were no test article related body weight or body weight gains noted at any dose levels in any group.

<u>Food consumption (dams)</u>: There were no test-article related changes in maternal food consumption during gestation.

Toxicokinetics: Not completed in this study (see pilot study data).

<u>Terminal and necroscopic evaluations: C-section data (implantation sites, pre- and post-implantation loss, etc.)</u>: Post-mortem necroscopic observations included scabbing and red discoloration at some of the injection sites in the 60 mg/kg/day lidocaine, 10 mg/kg/day tetracaine and the 10 mg/kg/day eutectic mixture of lidocaine and tetracaine. These findings were likely attributed to the test article.

There were no significant differences between groups in gravid uterine weights, adjusted Day 20 gestation body weights and body weight gains over Days 0-20.

There were no abortions or early deliveries noted, and pregnancy rate was similar across all groups (96-100%) except for the 5 mg/kg/day lidocaine group and the 5 mg/kg/day tetracaine group (84% and 88%, respectively). One female in the 60 mg/kg/day lidocaine group and one female in the 5 mg/kg/day lidocaine group had all resorptions, while all groups had 20 or more pregnant animals with viable fetuses.

| Summary of Maternal and Developmental Observations at Uterine Examination |         |    |           |    |       |       |          |
|---------------------------------------------------------------------------|---------|----|-----------|----|-------|-------|----------|
| Group                                                                     | Vehicle |    | Lidocaine | •  | Tetra | caine | Lido/Tet |
| Dose (mg/kg)                                                              | 0       | 5  | 15        | 60 | 5     | 10    | 10/10    |
| Endpoint                                                                  |         |    |           |    | ,     |       |          |
| # Females on study                                                        | 25      | 25 | 25        | 25 | 25    | 25    | 25       |
| # not pregnant                                                            | 0       | 4  | 0         | 1  | 3     | 0     | 1        |
| # pregnant                                                                | 25      | 21 | 25        | 24 | 22    | 25    | 24       |
| Pregnancy Index (%)                                                       | 100     | 84 | 100       | 96 | 88    | 100   | 96       |

| # Died Pregnant                 | 0    | 0    | 0    | 0    | 0    | 5    | 0     |
|---------------------------------|------|------|------|------|------|------|-------|
| # Abortions                     | 0    | 0    | 0    | 0    | 0    | 0.   | 0     |
| # Early deliveries              | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| # Females with all resorptions  | 0    | 1    | 0    | 1    | 0    | 0    | 0     |
| # females with viable fetuses   | 25   | 21   | 25   | 24   | 22   | 20   | 24    |
| Day 20 gestation                |      |      |      |      |      |      |       |
| Mean Corpora Lutea              | 13.1 | 13.6 | 13.7 | 14.2 | 13.6 | 13.0 | 15.3* |
| Mean Implantation sites         | 12.3 | 12.3 | 12.7 | 12.7 | 12.5 | 12.3 | 12.3  |
| Mean Preimplantation loss %     | 7.86 | 5.73 | 6.77 | 6.24 | 6.17 | 5.04 | 17.41 |
| Mean Viable fetuses             | 11.6 | 11.8 | 12.2 | 12.0 | 12.0 | 11.6 | 11.9  |
| Mean Fetal sex ratio (% males)  | 54.3 | 46.0 | 48.1 | 45.0 | 53.7 | 52.2 | 50.0  |
| Mean postimplantation loss (%)  | 5.08 | 8.35 | 3.96 | 8.87 | 4.66 | 5.91 | 2.28  |
| Mean Nonviable fetuses          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   |
| Mean Litter size                | 11.6 | 11.8 | 12.2 | 12.0 | 12.0 | 11.6 | 11.9  |
| Mean Resorptions (early + late) | 0.7  | 0.5  | 0.5  | 0.7  | 0.6  | 0.8  | 0.3   |
| Mean Resorptions (early)        | 0.7  | 0.5  | 0.5  | 0.7  | 0.6  | 0.8  | 0.3   |
| Mean Resorptions (late)         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   |

<sup>\*</sup> p < 0.05 compare to control

Offspring (malformations, variations, etc.): There were no significant differences in the mean fetal weights (males, females or combined) between treatment groups. Further, there were no differences in the incidence of external malformations or variations that could be attributed to drug treatment. There was a slight increase in the number of fetuses with unossified hyoid of the skull in the lidocaine/tetracaine eutectic mixture group; however, this was not statistically significant and within historical control range (maximum of 6.9% of fetuses and 24% litters affected).

| Summary of Fetal External Observations |                                                         |                   |     |     |            |     |          |  |
|----------------------------------------|---------------------------------------------------------|-------------------|-----|-----|------------|-----|----------|--|
| (Incidence exp                         | (Incidence expressed as the number of fetuses affected) |                   |     |     |            |     |          |  |
| Group                                  | Vehicle                                                 | Vehicle Lidocaine |     |     | Tetracaine |     | Lido/Tet |  |
| Dose (mg/kg)                           | 0                                                       | 5                 | 15  | 60  | 5          | 10  | 10/10    |  |
| # of Litters Evaluated                 | 25                                                      | 20                | 25  | 23  | 22         | 20  | 24       |  |
| # of Fetuses Evaluated                 | 290                                                     | 248               | 304 | 288 | 263        | 231 | 286      |  |
| Body                                   |                                                         |                   |     |     |            |     |          |  |
| Entire, thoracogastroschisis           | 0                                                       | 0                 | 0   | 0   | 1          | 0   | 0        |  |
| Forelimbs                              |                                                         |                   |     |     |            |     |          |  |
| Digits, ectrodactyly                   | 0                                                       | 0                 | 0   | 0   | 1          | 0   | 0        |  |
| Hindlimbs                              |                                                         |                   |     |     |            |     |          |  |
| Entire, abnormal flexure               | 0                                                       | 0                 | 0   | 0   | 1          | 0   | 0        |  |
| Hind paw, edema                        | . 0                                                     | 0                 | 0   | 0   | 0          | 1   | 0        |  |
| Tail                                   |                                                         |                   |     |     |            |     |          |  |
| Entire, absent                         | 0                                                       | 0                 | 0   | 0   | 0          | 0   | 1        |  |
| Summary of External Obs.               |                                                         |                   |     |     |            |     |          |  |
| Total Malformations                    |                                                         |                   |     |     |            |     |          |  |
| # Litters (%)                          | 0                                                       | 0                 | 0   | 0   | 1          | 0   | 1        |  |
| # Fetuses (%)                          | 0                                                       | 0                 | 0   | 0   | 1          | 0   | 1        |  |
| Total Variations                       |                                                         |                   |     |     |            |     |          |  |
| # Litters (%)                          | 0                                                       | 0                 | 0   | 0   | 1          | 0   | 0        |  |
| # Fetuses (%)                          | 0                                                       | 0                 | 0   | 0   | 1          | 0   | 0        |  |

| Summary of Fetal Visceral Observations |                                                         |           |            |          |  |  |  |
|----------------------------------------|---------------------------------------------------------|-----------|------------|----------|--|--|--|
| (Incidence exp                         | (Incidence expressed as the number of fetuses affected) |           |            |          |  |  |  |
| Group                                  | Vehicle                                                 | Lidocaine | Tetracaine | Lido/Tet |  |  |  |

| Dose (mg/kg)                      | 0   | 60  | 10  | 10/10 |
|-----------------------------------|-----|-----|-----|-------|
| # of Litters Evaluated            | 24  | 23  | 20  | 24    |
| # of Fetuses Evaluated            | 143 | 147 | 116 | 143   |
| Kidney                            |     |     |     |       |
| Increased renal pelvic cavitation | 0   | 3   | 0   | 1     |
| Ureter, dilated                   | 0   | 1   | 0   | 0     |
| Summary of Visceral Obs.          |     |     |     |       |
| Total Malformations               |     |     |     |       |
| # Litters (%)                     | 0   | 0   | 0   | 0     |
| # Fetuses (%)                     | 0   | 0   | 0   | 0     |
| Total Variations                  |     |     |     |       |
| # Litters (%)                     | 0   | 2   | 0   | 1     |
| # Fetuses (%)                     | 0   | .3  | 0   | 1     |

| Summ                           | Summary of Fetal Skeletal Observations |                |                |          |  |  |
|--------------------------------|----------------------------------------|----------------|----------------|----------|--|--|
| (Incidence ex                  | oressed as the                         | number of fetu | ises affected) |          |  |  |
| Group                          | Vehicle                                | Lidocaine      | Tetracaine     | Lido/Tet |  |  |
| Dose (mg/kg)                   | 0                                      | 60             | 10             | 10/10    |  |  |
| # of Litters Evaluated         | 25                                     | 23             | 20             | 24       |  |  |
| # of Fetuses Evaluated         | 147                                    | 141            | 115            | 143      |  |  |
| Pelvic Girdle                  |                                        |                |                |          |  |  |
| Ischium, incompletely ossified | 0                                      | 1              | 1              | 0        |  |  |
| Pubic, not ossified            | 1                                      | 0              | 0              | 0        |  |  |
| Rib(s)                         |                                        |                |                |          |  |  |
| Rib(s), bent                   | 0                                      | 1              | 0              | 0        |  |  |
| Rib(s), rudimentary            | 15                                     | 11             | 13             | 14       |  |  |
| Rib(s), unilateral full rib    | 3                                      | 0              | 0              | 0        |  |  |
| Skull                          |                                        |                |                |          |  |  |
| Hyoid, not ossified            | 1                                      | 1              | 1              | 5        |  |  |
| Sternum                        |                                        |                |                |          |  |  |
| Sternebra(e), misaligned       | 1                                      | 2              | 1              | 1        |  |  |
| Sternebra(e), not ossified     | 15                                     | 13             | 14             | 7        |  |  |
| Summary of Skeletal Obs.       |                                        |                |                |          |  |  |
| Total Malformations            |                                        |                |                |          |  |  |
| # Litters (%)                  | 0                                      | 0              | 0              | 0        |  |  |
| # Fetuses (%)                  | 0                                      | 0              | 0              | 0        |  |  |
| Total Variations               | •                                      |                |                |          |  |  |
| # Litters (%)                  | 12                                     | 17             | 13             | 15       |  |  |
| # Fetuses (%)                  | 32                                     | 25             | 27             | 25       |  |  |

Study title: Study for Effects on Embryo-Fetal Development in New Zealand White Rabbits

**Key study findings**: The effect of subcutaneous lidocaine (1, 5 and 15 mg/kg/day), **tetracaine** (1 and 5 mg/kg/day) and the **eutectic combination** of the two (5 mg/kg/day each) on the embryo-fetal development of the rabbit were examined with the following key findings:

a. Maternal toxicity was noted at the high doses of lidocaine, tetracaine and the combination, indicating that the study is a valid assessment of the teratogenic potential of these drugs.

- b. There was no evidence of teratogenicity in any treatment under the conditions of this assay.
- c. The NOAEL for maternal toxicity was 1 mg/kg/day of tetracaine and 15 mg/kg/day of lidocaine. These doses correspond to 12 and 180 mg/m<sup>2</sup>, on a body surface area basis.
- d. The NOAEL for developmental effects was 5 mg/kg/day tetracaine, 15 mg/kg/day lidocaine and 5 mg/kg/day each in a eutectic mixture (highest dose tested). These doses correspond to 60, 180 and 60/60 mg/m<sup>2</sup>, respectively, on a body surface area basis.

Study no.:

925-016

Volume #, and page #:

Volume 6, Page 1

Conducting laboratory and location:

Date of study initiation:

February 26, 2003

GLP compliance:

Yes

OA reports:

yes(X)no()

Drug, lot #, and % purity:

Tetracaine base, Batch # 721724,

Lidocaine base, Lot #811D0013

Methods

Doses:

Lidocaine 1, 5 and 15 mg/kg, s.c.

Tetracaine 1 and 5 mg/kg, s.c.

Lidocaine/Tetracaine 5/5 mg/kg, s.c.

Species/strain:

New Zealand White Hra(NZW)SPF Rabbits ' -

Number/sex/group:

23/group as outlined in the table below:

| Group Assignment           |                                                                                                                      |  |  |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Dose Level<br>(mg/kg/day)  | Number of Time-mated Female<br>Rabbits                                                                               |  |  |  |  |
| 0 (Vehicle Control)        | 23                                                                                                                   |  |  |  |  |
| 1 (Lidocaine)              | 23                                                                                                                   |  |  |  |  |
| 5 (Lidocaine)              | 23                                                                                                                   |  |  |  |  |
| 15 (Lidocaine)             | 23                                                                                                                   |  |  |  |  |
| 1 (Tetracaine)             | 23                                                                                                                   |  |  |  |  |
| 5 (Tetracaine)             | 23                                                                                                                   |  |  |  |  |
| 5/5 (Lidocaine/Tetracaine) | 23                                                                                                                   |  |  |  |  |
|                            | Dose Level (mg/kg/day)  0 (Vehicle Control) 1 (Lidocaine) 5 (Lidocaine) 15 (Lidocaine) 1 (Tetracaine) 5 (Tetracaine) |  |  |  |  |

Route, formulation, volume, and infusion rate: Subcutaneous, vehicle was phosphate buffered saline, pH =  $6.0 \pm 0.2$ , volume of 1 ml/kg. The dosing formulations were determined to be stable for 14 days when refrigerated via preliminary studies.

Satellite groups used for toxicokinetics: Not completed in this study.

**Study design:** Test article and vehicle control administration began on Day 7 of gestation and continued through to include Day 20 of gestation. Individual doses were based on the most recent body weight. Test article/vehicle was administered via a 26-gauge hypodermic needle subcutaneously in the scapular and lumbar regions of the lower back. Dosing was alternate form left to right.

#### Parameters and endpoints evaluated:

Mortality and Clinical Signs: Animals were observed twice daily for morbidity, mortality, signs of injury and availability of food and water. Detailed clinical examinations were conducted daily from Days 7 through 29 of gestation.

Body Weights: Body weights were recorded on Days 0, 7, 10, 13, 16, 18, 21, 25 and 29 of gestation. Body weight changes were calculated for the following gestation day intervals: 0-7, 7-10, 10-13, 13-16, 16-18, 18-21, 21-29 and 0-29. Adjusted body weight (Day 29 gestation body weight minus gravid uterine weight) and adjusted body weight change (Days 0-29 of gestation) were also calculated.

Food Consumption: Food consumption was recorded daily and reported on the corresponding body weight days and calculated for the same intervals as body weight intervals.

Post Mortem Evaluations: On Day 29, dams were sacrificed by sodium pentobarbital injection followed by exsanguinations from the femoral blood vessels and immediately subjected to cesarean section. Maternal necropsy, ovarian and uterine examinations were completed. The following were recorded: gravid uterine weight, location of viable and nonviable fetuses, early and late resorptions, position of cervix, total number of implantations, number or corpora lutea on each ovary.

<u>Teratogenic Examinations</u>: Fetuses were individually weighed, sexed, tagged and examined for external malformations and variations. Fetuses were euthanized via intraperitoneal injection of sodium barbital. Approximately half were placed in Bouin's solution, the remaining in alcohol. Skeletal malformations and developmental variations were noted and classified as such under the supervision of a developmental toxicologist.

<u>Statistical analysis</u>: Statistical analysis was conducted according to the following table:

APPEARS THIS WAY ON ORIGINAL

| S                                              |
|------------------------------------------------|
| Analysis                                       |
|                                                |
| p Pair-wise Comparisons                        |
| •                                              |
|                                                |
| Fisher's Exact Test                            |
|                                                |
| Pair-wise Comparisons                          |
| Pair-wise Comparisons                          |
| Pair-wise Comparisons                          |
| Fisher's Exact Test                            |
| Pair-wise Comparisons                          |
| Pair-wise Comparisons                          |
| Descriptive Statistics                         |
| Pair-wise Comparisons                          |
| Pair-wise Comparisons                          |
| Pair-wise Comparisons                          |
| quare-Root Transformation                      |
| quare-Root Transformation                      |
| Covariate Analysis                             |
| Fisher's Exact Test                            |
| risher's Exact Test                            |
| Fisher's Exact Test  lences were statistically |
|                                                |

#### Results

Mortality (dams): One pregnant animal in the 5 mg/kg/day lidocaine group was sacrificed in extremis on Day 15 due to a hind limb impairment. This was not thought to be treatment-related. One pregnant animal in the 15 mg/kg/day lidocaine group was found dead on Day 21 and one pregnant animal in the 5 mg/kg/day tetracaine group was found dead on Day 17. The tetracaine animal had decreased activity, absence of feces and inappetance prior to death. There were no clinical signs in the 15 mg/kg/day lidocaine animal prior to death. The death of the animal in the tetracaine group was considered to be test-article related. However, the sponsor does not consider the death of the animals treated with lidocaine to be treatment-related. As dosing was completed on study day 20, this conclusion appears to be reasonable.

<u>Clinical signs (dams)</u>: Lidocaine treatment-related clinical findings were limited to aggressive behavior in 2 dams treated with the high dose, hair absent/sparse in various regions and scabbed areas on the back that where likely related to injection sites irritation. Behavioral changes in the tetracaine treated animals included decreased activity, ataxia, aggressive behavior, convulsions and prostration. The tetracaine-induced prostration, ataxia

and to a lesser extent convulsions appear to have been increased by the addition of the lidocaine.

| S                                                   | Summary | of Clinic | al Observ | ations in 1 | he Dams |        |          |  |  |  |
|-----------------------------------------------------|---------|-----------|-----------|-------------|---------|--------|----------|--|--|--|
| (# times observed/total number of animals affected) |         |           |           |             |         |        |          |  |  |  |
| Group                                               | Vehicle |           | Lidocaine |             | Tetra   | caine  | Lido/Tet |  |  |  |
| N                                                   | 23      | 23        | 23        | 23          | 23      | 23 23  |          |  |  |  |
| Dose (mg/kg)                                        | 0       | 1         | 5         | 15          | 1       | 5      | 5/5      |  |  |  |
| Behavior                                            |         |           |           |             |         |        |          |  |  |  |
| Activity Decreased                                  | 4/3     | 6/1       | 3/2       | 11/2        | 0/0     | 106/22 | 216/23   |  |  |  |
| Activity Increased                                  | 0/0     | 0/0       | 0/0       | 0/0         | 0/0     | 0/0    | 1/1      |  |  |  |
| Ataxia                                              | 0/0     | 0/0       | 0/0       | 0/0         | 0/0     | 1/1    | 13/8     |  |  |  |
| Behavior aggressive                                 | 0/0     | 0/0       | 0/0       | 0/0         | 0/0     | 13/1   | 10/1     |  |  |  |
| Convulsions – clonic                                | 0/0     | 0/0       | 0/0       | 0/0         | 0/0     | 12/9   | 18/11    |  |  |  |
| Inappetence                                         | 0/0     | 0/0       | 0/0       | 0/0         | 0/0     | 2/1    | 0/0      |  |  |  |
| Prostration                                         | 0/0     | 0/0       | 0/0       | 0/0         | 0/0     | 87/22  | 163/23   |  |  |  |
| Skin*                                               |         |           |           |             |         |        |          |  |  |  |
| Hair sparse, lumbar                                 | 0/0     | 0/0       | 0/0       | 8/1         | 3/1     | 21/3   | 0/0      |  |  |  |
| Hair absent, lumbar                                 | 1/1     | 3/1       | 0/0       | 15/2        | 3/1     | 0/0    | 0/0      |  |  |  |
| Scabbed area, lumbar                                | 0/0     | 0/0       | 0/0       | 23/2        | 25/2    | 64/7   | 10/1     |  |  |  |
| Respiration                                         |         |           |           |             |         |        |          |  |  |  |
| Rapid breathing                                     | 0/0     | 0/0       | 0/0       | 0/0         | 0/0     | 102/21 | 219/23   |  |  |  |

<sup>\*</sup> Only selected body regions are described here. The study report breaks down a large number of regions which were not deemed necessary to reproduce here.

Body weight (dams): There were no test-article related changes in body weight or body weight gain with any dose of lidocaine or with the low dose of tetracaine (1 mg/kg/day). Body weight and body weight gains of the dams in the 5 mg/kg/day tetracaine group and the 5/5 mg/kg/day lidocaine/tetracaine group were lower than the controls at the Day 7-21 gestational interval for tetracaine 5 mg/kg/day and the Day 0-29 gestational interval for the high dose tetracaine and lidocaine/tetracaine groups. These changes are considered to be treatment related.

<u>Food consumption (dams)</u>: Food consumption in the lidocaine 15 mg/kg/day dams for gestational intervals Day 7-21 and Day 0-29 were slightly lower than controls, but not statistically significant. There as a statistically significant decrease in food consumption in dams treated with 5 mg/kg tetracaine or 5/5 mg/kg/day lidocaine/tetracaine for gestational intervals Day 7-21 and Day 0-29. These changes are considered to be treatment related.

<u>Toxicokinetics</u>: Not completed in this study (see pilot study data).

<u>Terminal and necroscopic evaluations: C-section data (implantation sites, pre- and postimplantation loss, etc.)</u>: Post-mortem necroscopic observations included scabbing at the injection site in one 15 mg/kg/day lidocaine dam, 1 mg/kg/day tetracaine dam and 5 dams in the 5 mg/kg/day lidocaine/tetracaine group. Red discoloration at the injection sites were also noted in one 5 mg/kg/day tetracaine dam and 2 dams in the 5/5 mg/kg/day lidocaine/tetracaine group. These findings were likely attributed to the test article.

There were no abortions or any early deliveries noted in any group, and pregnancy rate was similar across all groups (91.3-100%). The number of females with viable litters was similar

across groups (ranged from 20-22). There were no statistically significant or toxicologically relevant changes in the number of corpora lutea, implantations, post-implantation loss, viable and non-viable fetuses or resorptions between groups.

| Summary of Maternal and         | d Develor | menta   | l Observ  | ations at | Uterin | e Exam | ination  |
|---------------------------------|-----------|---------|-----------|-----------|--------|--------|----------|
| Group                           | Vehicle   |         | Lidocaine | 2         | Tetra  | caine  | Lido/Tet |
| Dose (mg/kg)                    | 0         | 1       | 5         | 15        | 1      | 5      | 5/5      |
| Endpoint                        |           |         |           |           |        |        |          |
| # Females on study              | 23        | 23      | 23        | 23        | 23     | 23     | 23       |
| # not pregnant                  | 1         | <u></u> | 2         | 2         | 2      | 0      | 1        |
| # pregnant                      | 22        | 21      | 21        | 21        | 21     | 23     | 22       |
| Pregnancy Index (%)             | 95.7      | 91.3    | 91.3      | 91.3      | 91.3   | 100    | 95.7     |
| # Died Pregnant                 | 0         | 0       | 1         | 1         | 0      | 1      | 0        |
| # Abortions                     | 0         | 0       | 0         | 0         | 0      | 0      | 0        |
| # Early deliveries              | 0         | 0       | 0         | 0         | 0      | 0      | 0        |
| # Females with all resorptions  | 0         | 0       | 0         | 0         | 0      | 0      | 0        |
| # females with viable fetuses   | 22        | 21      | 20        | 20        | 21     | 22     | 22       |
| Day 20 gestation                |           |         |           |           |        |        |          |
| Mean Corpora Lutea              | 9.6       | 10.4    | 10.2      | 9.8       | 10.5   | 9.7    | 10.9     |
| Mean Implantation sites         | 9.1       | 9.4     | 9.6       | 9.1       | 9.9    | 9.0    | 10.0     |
| Mean Preimplantation loss %     | 5.21      | 10.61   | 5.42      | 7.34      | 5.93   | 6.36   | 6.42     |
| Mean Viable fetuses             | 8.8       | 9.0     | 9.2       | 8.8       | 9.4    | 8.5    | 9.6      |
| Mean Fetal sex ratio (% males)  | 54.1      | 56.7    | 49.6      | 51.4      | 49.8   | 46.8   | 52.8     |
| Mean postimplantation loss (%)  | 2.66      | 3.0     | 3.47      | 2.69      | 4.16   | 5.79   | 3.89     |
| Mean Nonviable fetuses          | 0.0       | 0.0     | 0.0       | 0.0       | 0.0    | 0.0    | 0.0      |
| Mean Litter size                | 8.8       | 9.0     | 9.2       | 8.8       | 9.4    | 8.5    | 9.6      |
| Mean Resorptions (early + late) | 0.3       | 0.3     | 0.4       | 0.3       | 0.4    | 0.5    | 0.4      |
| Mean Resorptions (early)        | 0.1       | 0.2     | 0.1       | 0.2       | 0.2    | 0.5    | 0.2      |
| Mean Resorptions (late)         | 0.1       | 0.1     | 0.3       | 0.1       | 0.2    | 0.1    | 0.2      |

<sup>\*</sup> p < 0.05 compare to control

Adjusted body weight and body weight gains were also not altered in dams treated with any regimen of lidocaine alone or 1 mg/kg tetracaine treatment. However, dams treated with 5 mg/kg/day tetracaine and 5/5 mg/kg/day lidocaine/tetracaine had a lower weight change from day 0 and animals in the 5/5 mg/kg/day lidocaine/tetracaine group had a lower adjusted bodyweight change from day 0 compared to control animals that was statistically significance. The magnitude of the body weight change from day 0 was approximately 28% for both the tetracaine and the tetracaine/lidocaine treatments, suggesting a primary role of tetracaine in this response.

| Summary of Gravid Uter          | Summary of Gravid Uterine Weight and Adjusted Body Weight Change Values |       |           |       |        |          |         |  |  |
|---------------------------------|-------------------------------------------------------------------------|-------|-----------|-------|--------|----------|---------|--|--|
| Group                           | Vehicle                                                                 |       | Lidocaine | •     | Tetra  | Lido/Tet |         |  |  |
| Dose (mg/kg)                    | 0                                                                       | 1     | 5         | 15    | 1      | 5        | 5/5     |  |  |
| Gravid uterine weight, kg       | 0.498                                                                   | 0.521 | 0.520     | 0.503 | 0.537  | 0.478    | 0.0875  |  |  |
| Final body weight, kg           | 3.916                                                                   | 3.946 | 3.848     | 3.893 | 3.858  | 3.794    | 3.837   |  |  |
| Adjusted final body weight, kg  | 3.418                                                                   | 3.425 | 3.328     | 3.389 | 3.321  | 3.318    | 3.323   |  |  |
| Weight change from day 0, kg    | 0.538                                                                   | 0.540 | 0.515     | 0.519 | 0.477  | 0.390*   | 0.388*  |  |  |
| Adjusted weight change from day | 0.041                                                                   | 0.019 | -0.005    | 0.015 | -0.060 | -0.086   | -0.126* |  |  |
| 0, kg                           |                                                                         |       |           |       |        |          |         |  |  |

<sup>\*</sup> p < 0.05 compared to vehicle-treated group

There were no significant differences in fetal body weight between treatment groups when examined as males, females or combined.

Offspring (malformations, variations, etc.): There were no statically significant increases in the total number of litters with **external malformations or external variations** noted under the conditions of the study. Statistical analysis of the data expressed on the basis of fetuses evaluated (rather than litters) was not completed by the sponsor. The data provided is reproduced below from the sponsor's Table 10.

| Sun                                 | nmary of | Summary of Fetal External Observations |           |            |            |          |         |  |  |  |
|-------------------------------------|----------|----------------------------------------|-----------|------------|------------|----------|---------|--|--|--|
| (Incidence                          | expresse | d as the                               | number    | of fetuses | s affected | d)       |         |  |  |  |
| Group                               | Vehicle  |                                        | Lidocaine |            | Tetra      | Lido/Tet |         |  |  |  |
| Dose (mg/kg)                        | 0        | 1                                      | 5         | 15         | 1          | 5        | 5/5     |  |  |  |
| # of Litters Evaluated              | 22       | 21                                     | 20        | 20         | 21         | 22       | 22      |  |  |  |
| # of Fetuses Evaluated              | 194      | 190                                    | 184       | 176        | 198        | 187      | 212     |  |  |  |
| Body                                |          |                                        |           |            |            |          |         |  |  |  |
| Abdomen, gastroschisis <sup>1</sup> | 0        | 0                                      | 0         | 1          | 0          | 0        | 1       |  |  |  |
| Entire, edema                       | 0        | 0                                      | 0         | 0          | 0          | 0        | 1       |  |  |  |
| Forelimbs                           |          |                                        |           |            |            |          |         |  |  |  |
| Digits, ectrodactyly                | 0        | 0                                      | 0         | . 0        | 0          | 0        | 1       |  |  |  |
| Entire, abnormal flexure            | 0        | 0                                      | 0         | 0          | 0          | 0        | 1       |  |  |  |
| Fore paw, abnormal flexure          | 0        | 1                                      | 0         | 0          | 0          | 0        | 1       |  |  |  |
| Hind limb(s)                        |          |                                        |           |            |            |          |         |  |  |  |
| Entire, abnormal flexure            | 0        | 0                                      | 0         | 0          | 0          | 0        | 1       |  |  |  |
| Entire, malrotated                  | 0        | 0                                      | 0         | 0          | 0          | 0        | 1       |  |  |  |
| Tail                                |          |                                        |           |            |            |          |         |  |  |  |
| Entire, absent                      | 0        | 0                                      | 0         | 0          | 0          | 0        | 1       |  |  |  |
| Summary of External Obs.            |          |                                        |           |            |            |          |         |  |  |  |
| Total Malformations                 | ]        |                                        |           |            |            |          |         |  |  |  |
| # Litters (%)                       | 0 (0)    | 0 (0)                                  | 0 (0)     | 1 (5.0)    | 0(0)       | 0 (0)    | 2 (9.1) |  |  |  |
| # Fetuses (%)                       | 0 (0)    | 0 (0)                                  | 0 (0)     | 1 (0.6)    | 0(0)       | 0 (0)    | 2 (0.9) |  |  |  |
| Total Variations                    |          |                                        |           |            |            |          |         |  |  |  |
| # Litters (%)                       | 0 (0)    | 1 (4.8)                                | 0 (0)     | 0 (0)      | 0(0)       | 0 (0)    | 2 (9.1) |  |  |  |
| # Fetuses (%)                       | 0 (0)    | 1 (0.5)                                | 0 (0)     | 0 (0)      | 0 (0)      | 0 (0)    | 2 (0.9) |  |  |  |

<sup>&</sup>lt;sup>1</sup> Gastroschisis -A defect in the abdominal wall resulting from rupture of the amniotic membrane during physiological gut-loop herniation or, later, owing to delayed umbilical ring closure; usually accompanied by protrusion of viscera.

There were no statically significant increases in the total number of litters with visceral malformations or visceral variations noted under the conditions of the study. There were several rare malformations noted in a treatment group that were not seen in the concurrent controls not have they been seen in the sponsor's historical database for the facility. These include hydrocephaly (lateral ventricle), absent gallbladder, absent ureter / kidney, and smaller than normal ovary. Although rare, the sponsor noted that they occurred in only one or two animals and there were no other animals affected and therefore are not considered to be related to the test article. Statistical analysis of the data expressed on the basis of fetuses evaluated (rather than litters) was not completed by the sponsor. The absent gall bladder was also noted in one vehicle treated animal and therefore does not appear to be related to drug treatment. The absent kidney and ureter noted in the lidocaine:tetracaine group is not a common finding and was not detected in the historical control database (MARTA and MTA). However, as this finding occurs in only one animal, the evidence is rather weak that the effect could be attributed to the drug treatments.

| h                             | ummary  |            |           |         |         |          |          |
|-------------------------------|---------|------------|-----------|---------|---------|----------|----------|
| Incidence                     |         | l as the r |           |         | ~       | ·        |          |
| Group                         | Vehicle |            | Lidocaine |         |         | caine    | Lido/Tet |
| Dose (mg/kg)                  | 0       | 1          | 5         | 15      | 1       | 5        | 5/5      |
| # of Litters Evaluated        | 22      | 21         | 20        | 20      | 21      | 22       | 22       |
| # of Fetuses Evaluated        | 194     | 190        | 184       | 176     | 198     | 187      | 212      |
| Gall Bladder                  |         |            |           |         |         |          |          |
| Absent                        | 1 (0.5) | 2 (1.1)    | 0         | 1 (0.6) | 0       | 0        | 0        |
| Small                         | 2 (1.0) | 3 (1.6)    | 1 (0.5)   | 2 (1.1) | 2 (1.0) | 3 (1.6)  | 10 (4.7) |
| Kidney                        |         |            |           |         |         |          |          |
| absent                        | 0       | 0          | 0         | 0       | 0       | 0        | 1 (0.5)  |
| Liver                         |         |            |           |         |         |          | :        |
| nodule                        | 0       | 0          | 0         | 0       | 1 (0.5) | 0        | 0        |
| Ovary                         |         |            |           |         |         |          |          |
| smaller than normal           | 0       | 0          | 0         | 0       | 0       | 1 (0.5)  | 0        |
| Ureter                        |         |            |           |         |         |          |          |
| Absent                        | 0       | 0          | 0         | 0       | 0       | 0        | 1 (0.5)  |
| Brain                         |         |            |           |         |         |          |          |
| Lat ventricle, hydrocephaly   | 0       | 0          | 0         | 0       | 0       | 1 (0.5)  | 0        |
| Head                          | _       |            |           | _       | _       |          |          |
| Eye, microphthalmia           | 0       | 0          | 0         | 0       | 0       | 0        | 1 (0.5)  |
| Aortic arch                   |         |            |           |         | 1       |          |          |
| Dilated                       | 0       | 1 (0.5).   | 1 (0.5)   | 0       | 1 (0.5) | 0        | 1 (0.5)  |
| Lungs (both)                  |         |            |           |         |         | 1 (0.5)  |          |
| Smaller than normal           | 0       | 0          | 0         | 0       | 0       | 1 (0.5)  | 0        |
| Diaphragm                     |         | 0          |           | _       |         | 1 (0.5)  |          |
| Diaphramatic hernia           | 0       | 0          | 0         | 0       | 0       | 1 (0.5)  | 0        |
| Intraventricular septum       |         | 1 (0.5)    | 1 (0.5)   |         | 1 (0.5) |          |          |
| Discontinuous                 | 0       | 1 (0.5)    | 1 (0.5)   | 0       | 1 (0.5) | 0        | 0        |
| Pulmonary truck               |         | 1 (0.5)    | ^         | _       | _       | _        | 1 (0.5)  |
| Constricted                   | 0       | 1 (0.5)    | 0         | 0       | 0       | 0        | 1 (0.5)  |
| Lung, Right                   | 0(40)   | 0 (4.0)    | 12 (7 1)  | 2 (1.1) |         | ((2.2)   | ((2.8)   |
| Azygous lobe absent           | 9 (4.6) | 8 (4.2)    | 13 (7.1)  | 2 (1.1) | 0       | 6 (3.2)  | 6 (2.8)  |
| Subclavian Artery             |         | 1 (0.5)    |           |         | _       | _        |          |
| Retroesophageal               | 0       | 1 (0.5)    | 0         | 0       | 0       | 0        | 0        |
| Thoracic Cavity Fluid Filled  | 0       | 0          | 0         | 0       | 0       | 0        | 1 (0.5)  |
| Persistent truncus arteriosus | 0       | 0          | 0         | 0       |         | 0        |          |
|                               | U       | U          | U         | U       | 1 (0.5) | <u> </u> | 0        |
| Summary of Visceral Obs.      |         |            |           | L       |         |          | L        |

Reviewer: R. Daniel Mellon, Ph.D.

| Total Malformations |          |          |          |          |         |          |          |
|---------------------|----------|----------|----------|----------|---------|----------|----------|
| # Litters (%)       | 1 (4.5)  | 2 (9.5)  | 1 (5.0)  | 1 (5.0)  | 2 (9.5) | 2 (9.1)  | 2 (9.1)  |
| # Fetuses (%)       | 1 (0.5)  | 3 (1.6)  | 1 (0.5)  | 1 (0.6)  | 2 (1.0) | 2(1.1)   | 3 (1.4)  |
| Total Variations    |          |          |          |          |         |          |          |
| # Litters (%)       | 6 (27.3) | 8 (38.1) | 8 (40.0) | 4 (20.0) | 2 (9.5) | 8 (36.4) | 9 (40.9) |
| # Fetuses (%)       | 10 (5.2) | 11 (5.8) | 14 (7.6) | 4 (2.3)  | 2 (1.0) | 9 (4.8)  | 14 (6.6) |

There were no statistically significant increases in the total number of **skeletal malformations** or **variations** when examined on a litter basis. Statistical analysis on the basis of the number of fetuses examined was not completed by the sponsor. The table below reproduces the data in sponsor's table 11. Although there were several malformations noted which exceeded the incidence in the control group, these were not statistically significant. The incidence of most of these observations were within the historic control range for the laboratory or occurred in a single pup at a single dose group and therefore considered by the sponsor to be unrelated to the study drug. One fetus displayed multiple external and skeletal malformations, including sacral neural arches absent, fused or misaligned for sacral vertebrae, sternebrae absent, thoracic centra absent and/or fused and thoracic neural arches misaligned and/or misshapen. As these findings were in a single pup, not statistically significant and/or were within the historical control range, the sponsor does not consider them to be related to the test article.

|                                      | Summary of Fetal Skeletal Observations |                |                |           |  |  |  |  |  |
|--------------------------------------|----------------------------------------|----------------|----------------|-----------|--|--|--|--|--|
| Incidence expre                      | ssed as the nu                         | mber of fetuse | s affected (%) |           |  |  |  |  |  |
| Group                                | Vehicle                                | Lidocaine      | Tetracaine     | Lido/Tet  |  |  |  |  |  |
| Dose (mg/kg)                         | 0                                      | 15             | 5              | 5/5       |  |  |  |  |  |
| # of Litters Evaluated               | 22                                     | 20             | . 22           | 22        |  |  |  |  |  |
| # of Fetuses Evaluated               | 194                                    | 176            | 187            | 212       |  |  |  |  |  |
| Caudal vertebra(e)                   |                                        |                |                |           |  |  |  |  |  |
| Neural arch(es) absent               | 0                                      | 0              | 0              | 1 (0.5)   |  |  |  |  |  |
| Cervical vertebra(e)                 |                                        |                |                |           |  |  |  |  |  |
| Centra, additional ossification      | 1 (0.5)                                | 0              | 0              | 3 1.4)    |  |  |  |  |  |
| Centra, misshapen                    | 0                                      | 0              | 0              | 3 (1.4)   |  |  |  |  |  |
| Neural arch(es), additional ossific. | 4 (2.1)                                | 0              | 5 (2.7)        | 5 (2.4)   |  |  |  |  |  |
| Neural arch(es), misaligned          | 0                                      | 0              | 0              | 1 (0.5)   |  |  |  |  |  |
| Neural arch(es), misshapen           | 0                                      | 0              | 0              | 1 (0.5)   |  |  |  |  |  |
| Hindlimb                             |                                        |                |                | ]         |  |  |  |  |  |
| Talus, not ossified                  | 0                                      | 0              | 0              | 2 (0.9)   |  |  |  |  |  |
| Rib(s)                               |                                        |                |                |           |  |  |  |  |  |
| Rib(s), discontinuous                | 1 (0.5)                                | 0              | 0              | 1 (0.5)   |  |  |  |  |  |
| Rib(s), fused                        | 0                                      | 0              | 0              | 1 (0.5)   |  |  |  |  |  |
| Rib(s), rudimentary                  | 50 (25.8)                              | 48 (27.3)      | 53 (28.3)      | 60 (28.3) |  |  |  |  |  |
| Rib(s), unilateral fill rib          | 28 (14.4)                              | 26 (14.8)      | 20 (10.7)      | 34 (16.0) |  |  |  |  |  |
| Sacral Vertebra(e)                   |                                        |                |                |           |  |  |  |  |  |
| Neural arch(es), absent              | 0                                      | 0              | 0              | 1 (0.5)   |  |  |  |  |  |
| Neural arch(es), fused               | 0                                      | 0              | 0              | 1 (0.5)   |  |  |  |  |  |
| Neural arch(es), misaligned          | 0                                      | 0              | 0              | 1 (0.5)   |  |  |  |  |  |
| Skull                                |                                        |                |                |           |  |  |  |  |  |
| Frontal bone, additional ossific.    | 0                                      | 0              | 3 (1.6)        | 1 (0.5)   |  |  |  |  |  |
| Hyoid arch, bent                     | 9 (4.6)                                | 11 (6.3)       | 7 (3.7)        | 8 (3.8)   |  |  |  |  |  |
| Hyoid body, not ossified             | 1 (0.5)                                | 2 (1.1)        | 0              | 3 (1.4)   |  |  |  |  |  |
| Nasal bone, additional ossific.      | 0                                      | 0              | 0              | 1 (0.5)   |  |  |  |  |  |
| Sternum                              |                                        |                |                |           |  |  |  |  |  |
| Sternebra(e), absent                 | 0                                      | 0              | 0              | 1 (0.5)   |  |  |  |  |  |

Reviewer: R. Daniel Mellon, Ph.D.

| Sternebra(e), additional ossific. | 4 (2.1)   | 6 (3.4)   | 3 (1.6)   | 2 (0.9)   |
|-----------------------------------|-----------|-----------|-----------|-----------|
| Sternebra(e), fused               | 2 (1.0)   | 6 (3.4)   | 2 (1.1)   | 2 (0.9)   |
| Sternebra(e), misaligned          | 2 (1.0)   | 1 (0.6)   | 0         | 0         |
| Sternebra(e), not ossified        | 16 (8.2)  | 16 (9.1)  | 20 (10.7) | 32 (15.1) |
| Thoracic vertebra(e)              |           |           |           |           |
| Centra, absent                    | 0         | 0         | 0         | 1 (0.5)   |
| Centra, fused                     | 0         | 0         | 0         | 1 (0.5)   |
| Neural arch(es), misaligned       | 0         | 0         | 0         | 1 (0.5)   |
| Neural arch(es), misshapen        | 0         | 0         | 0         | 1 (0.5)   |
| Summary of Skeletal Obs.          |           |           |           |           |
| Total Malformations               |           |           |           |           |
| # Litters (%)                     | 3 (13.6)  | 5 (25)    | 2 (9.1)   | 5 (22.7)  |
| # Fetuses (%)                     | 3 (1.5)   | 6 (3.4)   | 2 (1.1)   | 7 (3.3)   |
| Total Variations                  |           |           | . ,       | ,         |
| # Litters (%)                     | 22 (100)  | 20 (100)  | 20 (90.9) | 22 (100)  |
| # Fetuses (%)                     | 80 (41.2) | 80 (45.4) | 78 (41.7) | 99 (46.7) |

Closer inspection of the individual fetus findings for the rare abnormalities noted above, indicates that fetus 9 from dam 346 who was treated with 5 /5 mg/kd lidocaine/tetracaine presented with the following malformations and variations:

| Malformations and V   | ariations in Fetus 9 from | Dam 346 (lidocaine/tetrac | aine treatment group) |
|-----------------------|---------------------------|---------------------------|-----------------------|
| Area                  | Location                  | Classification            | Observation           |
| External Observations |                           |                           |                       |
| Body                  | Abdomen                   | Malformation              | Gastroschisis         |
| Forelimb(s)           | Digits                    | Malformation              | Ectrodactyly          |
| Forelimb(s)           | Entire                    | Variation                 | Abnormal flexure      |
| Hind limb(s)          | Entire                    | Variation                 | Abnormal flexure      |
| Hind limb(s)          | Entire                    | Malformation              | Malrotate             |
| Tail                  | Entire                    | Malformation              | Absent                |
| Visceral Observations |                           |                           |                       |
| Abdominal cavity      | Gallbladder               | Variation                 | Smaller than normal   |
| Abdominal cavity      | Kidney                    | Malformation              | Absent                |
| Abdominal cavity      | Ureter                    | Malformation              | Absent                |
| Skeletal Observations |                           |                           |                       |
| Thoracic vertebra(e)  | Centra                    | Malformation              | Absent                |
| Thoracic vertebra(e)  | Centra                    | Malformation              | Fused                 |
| Skull                 | Hyoid body                | Variation                 | Not ossified          |
| Caudal vertebra(e)    | Neural arch(es)           | Malformation              | Absent                |
| Sacral vertebra(e)    | Neural arch(es)           | Malformation              | Absent                |
| Sacral vertebra(e)    | Neural arch(es)           | Malformation              | Fused                 |
| Sacral vertebra(e)    | Neural arch(es)           | Malformation              | Misaligned            |
| Thoracic vertebra(e)  | Neural arch(es)           | Malformation              | Misaligned            |
| Thoracic vertebra(e)  | Neural arch(es)           | Malformation              | Misshapen             |
| Ribs                  | Ribs                      | Malformation              | Fused                 |
| Sternum               | Sternebra(e)              | Variation                 | Absent                |
| Sternum               | Sternebra(e)              | Variation                 | Not ossified          |
| Hind limb(s)          | talus                     | Variation                 | Not ossified          |

Dam 346 had a low final body weight and adjusted final body weight 2.964 kg. In addition, fetus 9 was approximately 15 grams less mass than the other 10 fetuses in the litter and clearly stands out from the remainder of the fetuses. Collectively, these data are not consistent with a teratogenic effect of lidocaine or tetracaine. The evidence for material toxicity in this Dam is a more likely explanation of the fetal effects noted for a good sized litter. This reviewer does not feel that the finding is related to the drug-treatment.

#### Prenatal and postnatal development

<u>Study Title:</u> Study for toxic effects on pre- and postnatal development, including maternal function, in rats

<u>Key study findings</u>: **Tetracaine base** administration to the female rat from GD6 to LD20 resulted in the following key findings:

- Mortality: 2 dams at a dose of 2.5 mg/kg and 1 dam at a dose of 7.5 mg/kg during gestation
- <u>Clinical observations</u> (maternal): decreased activity, ataxia, prostration, rapid breathing, and scabs at injection site at a dose of 7.5 mg/kg
- <u>Body weight gains:</u> decreased at a dose of 7.5 mg/kg during gestation and in all treated groups during LD0-4
- No developmental affects on offspring when tetracaine base was given s.c.
- NOAEL =  $[F_0]$  2.5 mg/kg/day (based on observations and body weight gains)  $[F_1]$  7.5 mg/kg/day

Study no: 925-017

Volume #, and page #: 22, pp. 22-1
Conducting laboratory and location:
Date of study initiation: 28 March 2003
GLP compliance/QA report: Yes (X) No ()

<u>Drug, lot #, radiolabel, and % purity:</u> tetracaine base/Z-02-003/purity not specified on CofA Formulation/vehicle: sterile water containing NaH<sub>2</sub>PO<sub>4</sub> and Na<sub>2</sub>HPO<sub>4</sub>

#### Methods:

Species/strain: timed-mated Sprague Dawley rats - CD(SD)IGS BR,

Doses employed: 0.75, 2.5, 7.5 mg/kg/day @ 1 mL/kg

Route of administration: s.c. (injections alternated between right and left should and

lumbar regions)

Study design: GD6-LD20 Number/sex/group: 25/group

<u>Parameters and endpoints evaluated:</u> Time-mated rats were used for the study. Clinical observations (twice daily), body weight, food consumption, parturition and litter observations, culling of litters to 8/sex on LD4, pup developmental indices during lactation included static righting reflex, pinna detachment, cliff aversion, eye opening, air drop righting reflex, auditory startle (end of lactation period), and during development vaginal opening, preputial separation, motor activity (PD 35) and step-through passive avoidance (PD74-77). F1 pups were allowed to mate and a cesarean section was performed on GD13 and male animals were euthanized after completion of the cesarean section.

#### Observation times and results:

Observations

Results

Mortality (maternal) Two dams were found dead on GD 17 and 19 at a dose of

2.5 mg/kg, and 1 dam was found dead on GD17 at a dose of 7.5 mg/kg. Cause of death was not determined. All other maternal animals survived to scheduled euthanasia.

Body weights (maternal)

Body weights were unremarkable for gestation and lactation. Body weight gains were decreased on GD6-10 (10%) and GD17-20 (12%) at a dose of 7.5 mg/kg. Body weight gains were decreased in all treated groups during LD0-4 (24-59%), and were statistically significantly decreased for the entire lactation period (LD0-21, 24%) at a dose of 0.75 mg/kg.

Food consumption (maternal)

Unremarkable during gestation and lactation.

 $\mathbf{F_0}$ 

In-life observations

Dams

Decreased activity, ataxia, prostration, rapid breathing, and scabs at the injection sites were observed at a dose of 7.5 mg/kg during the gestation and lactation periods. Delivery/littering data were unremarkable.

Offspring

A low incidence of desquamation (entire body) at a dose of 7.5 mg/kg, and scabbed in all dose groups were observed.

 $\mathbf{F_0}$ 

Terminal/necroscopic evaluations

Dams

Discoloration, scabs, and skin thickening were observed at a dose of 7.5 mg/kg.

Offspring

Unremarkable.

 $\mathbf{F}_{\mathbf{1}}$ 

**In-life** observations

Male and female rats

Unremarkable for observations, developmental landmarks, and post-weaning behavioral tests. It should be noted that there were statistically significant increases in motor activity and time to achieve passive avoidance at doses  $\geq 2.5$  mg/kg. The reason for the statistical significance is that the control group animals in this study exhibited values that were outside (below) the historical control data (HCD), while the treated group values are within HCD.

Dams

Unremarkable.

**Body weights** 

Male rats
Female rats

Unremarkable. Unremarkable.

#### Terminal/necroscopic

evaluations

Male rats Unremarkable.

Dams Unremarkable.

[Note: GD = gestation day; LD=lactation day; PD=postnatal day]

#### 2.6.6.7 Local tolerance:

### <u>A. Study title:</u> A dermal irritation study of S-Caine™ (lidocaine 7% and tetracaine 7% cream) peel in rabbits.

#### Key study findings:

- Very slight erythema and edema with S-Caine™ Peel by 48 hrs with resolution by 72 hrs
- TK: animals were exposed to lidocaine > tetracaine with a delay in  $T_{max}$  due to a redistribution from the skin to the systemic exposure after peel removal

Study no.: 925-018

Volume #, and page #: 14, pp. 14-1 Conducting laboratory and location: Date of study initiation: 23 July 2003

GLP compliance/QA reports: yes (X) no ()

Drug, lot #, and % purity: S-Caine™ Peel (7% lidocaine, 7% tetracaine)/PE-1806: — % for

lidocaine, —for tetracaine

Formulation/vehicle: Placebo Peel/ PE-1908; mineral oil/020269

<u>Doses</u>: 6 grams on 2 inches squared (or 30 cm<sup>2</sup>) for 2 hours applied as a single application <u>Study design</u>: Rabbits (N=3 male) were topically administered S-Caine<sup>™</sup> Peel for 2 hrs. The peel was then removed; the area cleaned with a water and a cloth, and then dermal irritation using Draize scoring was conducted at times of 0, 24, 48, and 72 hrs. TK samples were taken at 2, 3, 6, 12, and 24 hrs after application. Body weights were recorded on SD1 and animals were euthanized 72 hrs after application.

<u>Results:</u> A 2 hour administration of S-Caine<sup>™</sup> Peel was well tolerated. Very slight erythema was observed in both the placebo and S-Caine<sup>™</sup> Peel groups, but the S-Caine<sup>™</sup> Peel group also exhibited very slight edema.

|                       |               | Study interval (hrs) <sup>a</sup> |    |     |    |  |  |  |
|-----------------------|---------------|-----------------------------------|----|-----|----|--|--|--|
| Treatment             | Severity      | 0                                 | 24 | 48  | 72 |  |  |  |
| Placebo Peel          | Erythema      |                                   |    |     |    |  |  |  |
|                       | 1=very slight | 2/3                               |    |     |    |  |  |  |
| S-Caine <sup>TM</sup> | Erythema      |                                   |    |     |    |  |  |  |
| Peel                  | 1=very slight | 1/3                               |    |     |    |  |  |  |
|                       | Edema         |                                   |    |     |    |  |  |  |
|                       | 1=very slight |                                   |    | 1/3 |    |  |  |  |

<u>Toxicokinetics</u>: All plasma samples had detectable levels of lidocaine and tetracaine.  $C_{max}$  and AUC values were higher for lidocaine than tetracaine (17-fold and 14-fold, respectively), but the  $T_{max}$  was comparable (3-6 hrs).  $T_{max}$  for both lidocaine and tetracaine occurred after peel removal, indicating a 're-distribution' from the skin to the systemic exposure. There was high intervariability in the  $C_{max}$  and AUC for lidocaine and tetracaine, with the highest variability being observed for tetracaine.

APPENDIX B: Pharmacokinetic Parameters for Lidocaine and Tetracaine for Individual Rabbits

| Animal No.                         |        | Lidocaine | <del>annická iráka (Oddista medecka ko</del> zi, <del>policianska zazav</del> zie. V roddis | Tetracaine |       |       |  |
|------------------------------------|--------|-----------|---------------------------------------------------------------------------------------------|------------|-------|-------|--|
|                                    | 7141   | 7142      | 7143                                                                                        | 7141       | 7142  | 7143  |  |
| C <sub>max</sub> (ng/mL)           | 149.14 | 89.41     | 305.31                                                                                      | 13.08      | 2.73  | 22.03 |  |
| T <sub>max</sub> (hr)              | 6      | 3         | 3                                                                                           | 6          | 3     | 3     |  |
| AUC <sub>0-24</sub> (ng•hr/mL)     | 1,693  | 316       | 1,056                                                                                       | 120.7      | 5.5   | 54.8  |  |
| Dose (mg)                          | 420    | 420       | 420                                                                                         | 420        | 420   | 420   |  |
| NAUC <sub>0-24</sub> (ng•hr/mL/mg) | 4.03   | 0.75      | 2.51                                                                                        | 0.287      | 0.013 | 0.130 |  |
| f <sup>2</sup>                     | 0.9919 | 0.5436    | 1.0000                                                                                      | NC         | NC    | NC    |  |
| k <sub>e</sub> (hr <sup>-1</sup> ) | 0.1571 | 0.0840    | 0.1443                                                                                      | NC         | NC    | NC    |  |
| t <sub>1/2</sub> (hr)              | 4.4    | 8.2       | 4.8                                                                                         | NC         | NC    | NC    |  |

NC = Could not be calculated by WinNonlin

Note: The values in bold italics are considered unreliable since  $r^2$  for the fit was < 0.8, and the values are not included in the mean values for  $k_e$  and  $t_{1/2}$ .

#### B. Study title: Modified primary dermal irritation.

#### Key study findings:

- S-Caine™ Peel was mildly irritating
- TK: Rabbits were exposed to lidocaine > tetracaine with a delay in  $T_{max}$  due to a re-distribution from the skin to the systemic exposure after peel removal

Study no.: X9L313G

<u>Volume #, and page #:</u> 14, pp. 14-64 Conducting laboratory and location:

<u>Date of study initiation:</u> 10 January 2000 <u>GLP compliance/QA reports:</u> yes (X) no ( )

Drug, lot #, and % purity: S-Caine™ Peel (7% lidocaine, 7% tetracaine)/SP 12-29-

99A/purity not specified

Formulation/vehicle: Placebo Peel/ SP 12-29-99 placebo; mineral oil

<u>Doses</u>: 6 grams on 2 inches squared (or 30 cm<sup>2</sup>) for 2 hrs applied as a single application using a hill top chamber

<sup>&</sup>lt;sup>a</sup> number represents number affected/sample size.

Reviewer: R. Daniel Mellon, Ph.D.

Study design: Rabbits (N=6 male) were topically administered S-Caine™ Peel for 2 hrs. The peel was then removed, the area cleaned with a water and a cloth, and then dermal irritation using Draize scoring was conducted at times of 0, 24, 48, and 72 hrs. TK samples were taken at 0, 2, and 3 hrs after application. Body weights were recorded prior to dosing.

Results: The primary irritation score (MPI) for the mineral oil, placebo peel, and S-Caine™ Peel were 0.2, 0.2, and 0.3, respectively. The MPI scores indicate that all treatments were mildly irritating to the skin, but the S-Caine™ Peel had a higher incidence of erythema than the other groups.

|                               |                          |     | (hrs) <sup>a</sup> |     |     |     |     |
|-------------------------------|--------------------------|-----|--------------------|-----|-----|-----|-----|
| Treatment                     | Severity                 | 0   | 2                  | 12  | 24  | 48  | 72  |
| Mineral oil                   | Erythema, very slight    | 3/6 | 2/6                | 2/6 | 2/6 |     | 1/6 |
| Placebo Peel                  | Erythema,<br>very slight | 2/6 | 1/6                | 1/6 | 1/6 | 1/6 | 1/6 |
|                               | Edema, very slight       |     |                    | 1/6 |     |     |     |
| S-Caine <sup>TM</sup><br>Peel | Erythema, very slight    | 4/6 | 2/6                | 2/6 | 2/6 | 2/6 | 2/6 |

<sup>&</sup>lt;sup>a</sup> number represents number affected/sample size.

<u>Toxicokinetics</u>: The level of detection for lidocaine and tetracaine were 100 ng/mL and 5 ng/mL, respectively. All plasma samples had detectable levels of lidocaine and tetracaine.  $C_{max}$  and AUC values were higher for lidocaine than tetracaine (6.6-fold and 8-fold, respectively), but the  $T_{max}$  was comparable. One problem with the TK study is that exposure levels were only examined through 3 hrs post-dose, therefore, making it difficult to know the complete AUC and the true  $t_{1/2}$  of the drugs.

APPEARS THIS WAY ON ORIGINAL

Table 2. Pharmacokinetic Parameters for Lidocaine and Tetracaine in Male Rabbits After a 2-Hour Application of S-Caine<sup>TM</sup> Peel

|              |                             | Lidocaine                | <                                | Tetracaine                  |                          |                                  |  |  |  |
|--------------|-----------------------------|--------------------------|----------------------------------|-----------------------------|--------------------------|----------------------------------|--|--|--|
| Rabbit No.   | C <sub>max</sub><br>(ng/mL) | T <sub>max</sub><br>(hr) | AUC <sub>0-3</sub><br>(ng•hr/mL) | C <sub>max</sub><br>(ng/mL) | T <sub>max</sub><br>(hr) | AUC <sub>0-3</sub><br>(ng•hr/mL) |  |  |  |
| 25035        | 190                         | 3                        | 260                              | 25                          | 3                        | 33.5                             |  |  |  |
| 25037        | 240                         | 3                        | 315                              | 64                          | 3                        | 63.5                             |  |  |  |
| 25059        | 140                         | 3                        | 235                              | 29                          | 3                        | 41.5                             |  |  |  |
| 25060        | 170                         | 3                        | 250                              | 10                          | 3                        | 14.0                             |  |  |  |
| 25061        | 160                         | 3                        | 305                              | 23                          | 3                        | 44.5                             |  |  |  |
| 25068        | 210                         | 2                        | 400                              | 18                          | 3                        | 21.8                             |  |  |  |
| Mean<br>± SD | 185<br>± 36                 | 2.8<br>± 0.4             | 294<br>± 61                      | 28.2<br>± 18.7              | 3.0<br>0.0               | 36.5<br>17.6                     |  |  |  |

### C. Study title: Dermal absorption and dermal irritation study of S-Caine<sup>TM</sup> Peel (lidocaine 7% and tetracaine 7% cream) in neonatal piglets.

#### Key study findings:

- No irritation was observed with S-Caine™ Peel
- TK: animals were exposed to lidocaine > tetracaine with a delay in  $T_{max}$  due to a re-distribution from the skin to the systemic exposure after peel removal

Study no.: 925-005

<u>Volume #, and page #:</u> 14, pp. 14-89 Conducting laboratory and location:

Date of study initiation: 06 September 2002

GLP compliance/QA reports: yes (X) no ()

<u>Drug, lot #, and % purity:</u> S-Caine™ Peel (7% lidocaine, 7% tetracaine)/PE-1806/ 6 for

lidocaine and tetracaine

Formulation/vehicle: mineral oil/lot no. 001191

Doses: 5 grams on 100 cm<sup>2</sup> for 30 mins, 10 grams on 100 cm<sup>2</sup> for 60 mins

Study design: Neonatal piglets (N=3/sex/group) were topically administered S-Caine<sup>TM</sup> Peel as outlined above. The peel was then removed, the area cleaned with a water and a cloth, and then dermal irritation using Draize scoring was conducted at times of 1, 24, 48, and 72 hrs. TK samples were taken at 0, 30, 60, 90 mins, and 2, 4, 8, 12, and 24 hrs after application. Body weights were recorded prior to dosing, on the day of dosing, and study termination. Animals were euthanized 72 hrs after dosing and microscopic evaluation of the skin was conducted.

<u>Results:</u> No dermal irritation was observed, body weights, clinical observations, and microscopic evaluations were unremarkable.

<u>Toxicokinetics</u>: All plasma samples had detectable levels of lidocaine and tetracaine.  $C_{max}$  and AUC values were higher for lidocaine than tetracaine for all treated groups. Ratios for the 5g/30 min group for  $C_{max}$  and AUC for male piglets were 10-fold and 168-fold, respectively, and for female piglets were 81-fold and 194-fold, respectively. Female piglets had higher exposure to lidocaine and tetracaine than male piglets in the 5 g/30 min group.  $T_{max}$  for the 5g/30 min group was longer for the male piglets for lidocaine, but were comparable for tetracaine for both genders. Ratios for the 10g/60 min group for  $C_{max}$  and AUC were comparable for male and female piglets (94-98-fold and 121-148-fold, respectively).  $T_{max}$  was also comparable for the 10g/60 min group.  $T_{max}$  tended to occur after patch removal, indicated a possible depot affect in the skin or a 're-distribution' of the lidocaine and tetracaine from the skin to the whole body.  $T_{max}$  was not dependent on dose, application time, or gender.

APPEARS THIS WAY ON ORIGINAL

Table 2. Mean Pharmacokinetic Parameters for Neonatal Piglets Receiving S-Caine M Peel Topically

| CONTRACTOR OF THE PROPERTY OF |                 | Male Piglets  | iglets          |           | or de la company de la comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Female     | Fernale Piglets |                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|-----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|----------------------------------------|
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lidocaine       |               | Tetracaine      |           | Lidocaine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | Tetracaine      |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mean ±SD        | ¢             | Mean ±SD        | u         | Mean ±SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c          | Mean ± SD       | c                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |               | Group 1:        | 30-Minute | Group 1: 30-Minute Application of 5 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                 |                                        |
| C <sub>max</sub> (ng/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 645 ±219        | (7)           | 6.49 ± 1.58     | 60        | 590 ± 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ო          | 7.26 ± 1.75     | m                                      |
| Tare (hc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.7 ± 2.3       | m             | 2.2 ± 1.6       | 62        | 4.0 ± 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ന          | 1.5 ± 0.5       | m                                      |
| AUCoza (ng•hr/ml.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8,881 ± 1,914   | m             | 52.9 ± 8.5      | m         | 7,655 ± 2,473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m          | 39.3 ± 18.0     | က                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1174 ± 0.0082 | r's           | 0.1302 ± 0.0296 | Ø         | 0.1254 ± 0.0298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m          | 0,1267          | <b>4</b> ~~                            |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.9 ± 0.4       | m             | 5,5 ± 1,3       | m         | 5.7 ± 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r)         | 60              | ***                                    |
| AUCh., (ng.hr/ml.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9,696 ± 1,993   | **>           | 61.1 ± 8.4      | m         | 8,209 ± 2,529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | es         | 60.3            | <b>4</b>                               |
| Weight (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.96 ± 0.18     | m             | 1,96 ± 0,18     | n         | 2.06 ± 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m          | 2.06 ± 0.21     | ಣ                                      |
| Cma_/Mt (ng/mL/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 335 ± 137       | ო             | 3.33 ± 0.90     | ෆ         | 296 ± 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m          | 3,61 ± 1,23     | m                                      |
| AUC <sub>6.24</sub> NM (ng•hr/mL/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,594 ± 1,340   | m             | 26.9 ±3.3       | m         | 3,785 ± 1,457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m          | 19.6 ± 10.6     | m                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |               | Group 2: 6      | D-Minute  | Group 2: 60-Minute Application of 10 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                 |                                        |
| Cream (ng/mt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,618 ± 382     | m             | 16,42 ± 7,20    | ო         | 1,277 ± 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ťΥ         | 13.64 ± 5.67    | ო                                      |
| Tmsz (117)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40 100          | m             | 2.5 ± 1.3       | m         | 3.3 ± 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m          | 4.0 ± 0.0       | ო                                      |
| AUCozz (ng-hr/mt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21,550 ± 6,746  | { <b>**</b> ) | 145.4 ± 24.2    | rή        | 18,675 ± 5,364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ო          | 154,4 ± 74.9    | m                                      |
| ( Ju 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1065 ± 0.0087 | *             | 0.1433 ± 0.0506 | ო         | 0.1158 ± 0.0394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m          | 0.1262          | N                                      |
| (F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.5 ± 0.6       | m             | 5.4 ± 2.4       | ო         | 6.4 ± 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m          | 9.0             | 7                                      |
| AUC <sub>Des</sub> (ng•hr/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24,051 ± 7,540  | で             | 153.4 ± 29.8    | ო         | 21,038 ± 6,894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>643</b> | 143.5           | 7                                      |
| Weight (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,03 ± 0,15     | <b>(7)</b>    | 203 ± 0.15      | ෆ         | 1.97 1.0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ო          | 1.97 ±0.17      | ಣ                                      |
| C <sub>mus</sub> /Wt (ng/mL/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 792 ± 136       | (7)           | 8.05 ± 3.20     | ო         | 648 ± 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m          | 6.80 ±2.31      | m                                      |
| AUC <sub>0.24</sub> /Wt (ng+hr/mL/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10,492 ± 2,570  | נייז          | 71.3 ± 6.7      | m         | 9,417 ±2,378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60         | 77.0 ±34.9      | ო                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |               |                 |           | of the state of th |            |                 | ************************************** |

Note: Standard deviations were not calculated for n < 3.

#### 2.6.6.8 Special toxicology studies:

#### A. Study title: Phototoxicity tests in rabbits.

#### Key study findings:

- The adequacy of the study is questionable as inadequate control groups were employed.
- However, 1 out of 4 sites that were irradiated after S-Caine Peel application showed well-defined/moderately severe erythema and slight-moderate edema.

Study no.: 0432LZ03.001

Volume #, and page #: 14, 14-190 (Original NDA Application)

Conducting laboratory and location: 4

<u>Date of study initiation:</u> 24 October 2003 GLP compliance/QA reports: yes (X) no ( )

Drug, lot #, and % purity: S-Caine<sup>TM</sup> Peel/PE01806/ ~ 6 for lidocaine and tetracaine

Formulation/vehicle: NA; positive control of 0.5% 8-MOPS

Doses: 0.2 mL on 4 cm<sup>2</sup> site

Study design: Rabbits (N=3/sex/group) were used. Group 1 was treated with mineral oil, positive control, or S-Caine™ Peel for 15 mins, then the skin was irradiated at to nonerythemogenic (i.e, uV greater than 280 nm or ~163 joules, cm²) at a distance of 10 inches for 60 mins. After the irradiation, the peel was removed and Draize scoring was performed. Group 2 was irradiated for 60 mins as outlined above, the mineral oil, positive control, or S-Caine™ Peel was applied and allowed to dry for 15 mins. All treatments remained in place for 60 mins, after which they were removed and Draize scoring was performed. An untreated site was also included on each animal. Draize scoring was performed at 24, 48, 72, and 96 hrs after treatment completion.

#### Results:

One out of 4 sites that were irradiated after peel application showed well-defined/moderately severe erythema and slight-moderate edema. No other affects were observed. The adequacy of the study is questionable as there are study design confounds which include: 1) the absorption spectrum of the product is unknown; 2) the correct control groups were not included; and 3) it is unknown if the stratum corneum is affected by removal of the peel. The absorption spectrum information is important because I cannot confirm that the wavelength used in the study (erythemogenic - uV greater than 280 nm or ~163 joules, cm²) is the wavelength that should have been used in the study. The wavelength to use in these studies depends on what wavelengths are absorbed by the drug. If the drug product does not absorb between 290 and 700 nm then phototoxicity is not likely to be a safety concern, but without the information on the absorption spectrum the interpretation of the study results is that S-Caine<sup>TM</sup> Peel treatment may cause irritation at the site of application if exposed to sunlight.

#### Dermal Observations/Post Treatment

|                                |              |             |             |             |             |             |     | 24 T | Touk |      | je. |      |     |      | 4   | 1                                       |
|--------------------------------|--------------|-------------|-------------|-------------|-------------|-------------|-----|------|------|------|-----|------|-----|------|-----|-----------------------------------------|
| Rabbit                         | Si           | te J        | Si          | te 3        | Si          | te 5        | Si  | te 7 | Si   | te 2 | Si  | te 4 | Si  | le ő | Si  | le 8                                    |
| No.                            | ER           | ED          | ER          | ED          | ER          | ED          | ER  | ED   | BR   | ED   | ER  | ED   | ER  | ED   | ER  | ED                                      |
| 13283                          | 2*           | 2*          | Ö           | 0           | 3           | 2           | 0   | 0    | 1*   | 0    | 0   | 0    | 0   | 0    | 0   | 0                                       |
| 1329 රී                        | 0            | 0           | 0           | 0           | 2           | 3           | 0   | 0    | 0    | 0    | 0   | 0    | 0   | 0    | 0   | 0                                       |
| 1330ඊ                          | 0            | 0           | 0           | O           | 2           | 3           | 0   | O    | 0    | 0    | 0   | 0    | 0   | 0    | 0   | 0                                       |
| 13312                          | 1*           | 0           | 0           | 0           | 3           | 3           | 0   | 0    | 0    | 0    | 0   | 0    | 0   | 0    | 0   | 0                                       |
| 1332♀                          | 0            | 0           | 0           | 0           | 3           | 3           | 0   | 0    | 0    | 0    | 0   | 0    | 0   | 0    | 0   | 0                                       |
| 1333♀                          | 0            | 0           | 0           | 0           | 3           | 3           | 0   | 0    | 0    | 0    | 0   | 0    | 0   | 0    | 0   | 0                                       |
| mean                           | 0.5          | 0.3         | 0.0         | 0.0         | 2.7         | 2,8         | 0.0 | 0.0  | 0.2  | 0.0  | 0,0 | 0.0  | 0.0 | 0.0  | 0.0 | 0.0                                     |
| SD                             | 0.8          | 0.8         | 0.0         | 0.0         | 0.5         | 0.4         | 0.0 | 0.0  | 0.4  | 0.0  | 0.0 | 0.0  | 0.0 | 0.0  | 0.0 | 0.0                                     |
|                                |              |             |             |             |             |             |     | 48 H | ours | i (  | 13, |      |     |      |     |                                         |
| Rabbit                         | Site 1       |             | Site 3      |             | Sit         | Site 5      |     | e 7  | Sit  | e 2  | Sit | e 4  | Sit | e 6  | Sit | e 8                                     |
| No.                            | ER           | ED          | ER          | ED          | ER          | ED          | ER  | ED   | ER   | ED   | ER  | ED   | ER  | ED   | ER  | ED                                      |
| 1328♂                          | 2*           | ]*          | 0           | 0           | 3           | 2           | 0   | 0    | 0    | 0    | 0   | 0    | 0   | 0    | 0   | 0                                       |
| 1329ථ                          | 0            | 0           | 0           | 0           | 2           | 2           | 0   | 0    | 0    | 0    | 0   | 0    | 0   | 0    | 0   | 0                                       |
| 10000                          |              |             |             |             | 1           |             |     | 34   | 0    | o    | n   | 0    | 0   | 0    | 0   | 0                                       |
| 1330&                          | 0            | 0           | 0           | 0           | 3           | 3           | 0   | 0    | U    | V    |     | U    | 7.5 |      | V   |                                         |
| 1330 <u>0</u><br>1331 <u>9</u> | 0<br>]*      | 0           | 0           | 0           | 3<br>3      | 3<br>2      | 0   | 0    | 0    | 0    | 0   | 0    | 0   | 0    | 0   | 0                                       |
|                                |              |             |             |             |             | ·····       |     |      |      |      |     |      |     |      |     | *************************************** |
| 1331º                          | 1*<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0 | 3<br>3<br>3 | 2<br>3<br>2 | 0   | 0    | 0    | 0    | 0   | 0    | 0   | 0    | Ō   | 0                                       |
| 1331♀<br>1332♀                 | ]*<br>0      | 0           | 0           | 0           | 3           | 2<br>3      | 0   | 0    | 0    | 0    | 0   | 00   | 0   | 0    | 0   | 0                                       |

ER = erythema

ੈ = Male

ED = edema

 $\hat{\mathbf{y}} = \mathbf{Fomale}$ 

Sites 1 & 2 = Test article

Sites 1, 3, 5 and 7 (left side) irradiated after treatment

Sites 3 & 4 = Vehicle

Sites 2, 4, 6 and 8 (right side) irradiated prior to treatment

Sites 5 & 6 = Positive control (8-MOP)

Sites 7 & 8 = Untreated

<sup>\*</sup>This score is attributed to mechanical damage occurring during test material removal after treatment and light exposure. Difficulty was experienced in test article removal in all six animals after treatment (test article/light exposure).

#### Dermal Observations/Post Treatment

|                                                       |                |                                       |                  |                   |                  |                   |                                             | 72 H           | ours                |              |                   |                   |                   |                  |                                          |                   |  |
|-------------------------------------------------------|----------------|---------------------------------------|------------------|-------------------|------------------|-------------------|---------------------------------------------|----------------|---------------------|--------------|-------------------|-------------------|-------------------|------------------|------------------------------------------|-------------------|--|
| Rabbi                                                 | Sit            | e 1                                   | Si               | le 3              | Si               | le 5              | 1                                           | te 7           | 4                   | le 2         | 1                 | e 4               | Si                | le 6             | Si                                       | e 8               |  |
| <u> </u>                                              |                | · · · · · · · · · · · · · · · · · · · | ļ                | <b>4</b>          |                  | _                 | <u> </u>                                    | ·              | <u> </u>            |              | <u> </u>          |                   |                   | ·                | <u> </u>                                 | <b>y</b>          |  |
| No.                                                   | ER             | ED                                    | ER               | ED                | ER               | ED                | ER                                          | ED             | ER                  | ED           | ER                | ED                | ER                | ED               | ER                                       | ED                |  |
| 1328ල්                                                | 2A*            | 0                                     | 0                | 0                 | 3                | ] ]               | 0                                           | 0              | 0                   | 0            | 0                 | 0                 | 0                 | 0                | 0                                        | 0                 |  |
| 1329ඊ                                                 | 0              | 0                                     | 0                | 0                 | 3                | 2                 | 0                                           | 0              | 0                   | 0            | 0                 | 0                 | 0                 | 0                | 0                                        | 0                 |  |
| 1330ඒ                                                 | 0              | 0                                     | 0                | 0                 | 3                | 2                 | 0                                           | 0              | 0                   | 0            | 0                 | 0                 | 0                 | 0                | 0                                        | 0                 |  |
| 13312                                                 | 0              | 0                                     | 0                | 0                 | 3                | 2                 | 0                                           | 0              | 0                   | 0            | 0                 | 0                 | 0                 | 0                | 0                                        | 0                 |  |
| 13329                                                 | 0              | 0                                     | 0                | 0                 | 3                | 3                 | 0                                           | 0              | 0                   | 0            | 0                 | 0                 | 0                 | 0                | 0                                        | 0                 |  |
| 1333♀                                                 | 0              | 0                                     | 0                | 0                 | 3                | 2                 | 0                                           | 0              | 0                   | 0            | 0                 | 0                 | 0                 | 0                | 0                                        | 0                 |  |
| Mean                                                  | 0.3            | 0.0                                   | 0                | 0                 | 3.0              | 2.0               | 0.0                                         | 0.0            | 0.0                 | 0.0          | 0.0               | 0.0               | 0.0               | 0.0              | 0.0                                      | 0.0               |  |
| SD                                                    | 0.8            | 0.0                                   | 0.0              | 0.0               | 0.0              | 0.6               | 0.0                                         | 0.0            | 0.0                 | 0.0          | 0.0               | 0.0               | 0.0               | 0.0              | 0.0                                      | 0.0               |  |
|                                                       | 11.4           |                                       |                  |                   |                  | N.                |                                             | 96 H           | 1                   |              |                   |                   |                   |                  |                                          |                   |  |
|                                                       | Site 1         |                                       | 1 Site 3 Site    |                   |                  | 3 / 2/20          | /V                                          | ишъ.           | erik yer            |              |                   |                   | 1 may 2 3 3 8     |                  |                                          |                   |  |
| Rabbi<br>t                                            | Site           | :1                                    | Sit              | e 3               | Sit              | e 5               | Sit                                         | and the second | Sit                 | e 2          | Sit               | e 4               | Sit               | e 6              | Sit                                      | c 8               |  |
| Rabbi<br>t<br>No.                                     | Site<br>ER     | ED                                    | Sit<br>ER        | e 3<br>ED         | Sin<br>ER        | e 5<br>ED         |                                             | and the second | ***********         | e 2<br>ED    | Sit<br>ER         | e 4<br>ED         | Sit<br>ER         | e 6<br>ED        | Sii<br>ER                                | e 8<br>ED         |  |
| t                                                     |                | <b></b>                               | ·                |                   | ,                | ·····             | Sit                                         | e 7            | Sit                 |              |                   |                   |                   |                  |                                          |                   |  |
| t<br>No.                                              | ER             | ED                                    | ER               | ED                | ER               | ED                | Sii<br>ER                                   | e 7<br>ED      | Sit<br>ER           | ED           | ER                | ED                | ER                | ED               | ER                                       | ED                |  |
| t<br>No.<br>1328ඊ                                     | ER<br>2A*      | ED<br>0                               | ER<br>0          | ED<br>0           | ER<br>2          | ED<br>0           | Sit<br>ER<br>0                              | e 7<br>ED<br>0 | Sit<br>ER<br>0      | ED<br>0      | ER<br>0           | ED<br>0           | ER<br>0           | ED<br>0          | ER<br>0                                  | ED<br>0           |  |
| t<br>No.<br>1328රී<br>1329රී                          | ER<br>2A*<br>0 | ED 0                                  | ER<br>0          | ED<br>0           | ER 2             | ED<br>0<br>2      | Sit<br>ER<br>0                              | ED<br>0        | Sit<br>ER<br>0<br>0 | 田のの          | ER<br>0<br>0      | ED<br>O           | ER<br>0           | ED<br>0          | ER<br>0                                  | ED 0              |  |
| t<br>No.<br>1328ල්<br>1329ල්<br>1330ල්                | ER<br>2A*<br>0 | ED<br>O<br>O                          | ER<br>0<br>0     | ED<br>O<br>O      | ER 2 3 3 3       | ED<br>0<br>2<br>2 | Site ER O O O O O O O O O O O O O O O O O O | ED<br>0<br>0   | Sit                 | ED<br>O<br>O | ER<br>0<br>0      | BD 0              | ER<br>0<br>0      | ED<br>O<br>O     | ER 0 0 0                                 | ED<br>O<br>O      |  |
| t<br>No.<br>1328♂<br>1329♂<br>1330♂<br>1331♀          | ER 2A* 0 0 0   | ED<br>0<br>0<br>0                     | ER 0 0 0 0 0     | ED<br>0<br>0<br>0 | ER 2 3 3 3 3     | ED 0 2 2 2 2 2    | Site ER O O O O O O O O O O O O O O O O O O | ED 0 0 0 0 0   | Sit<br>ER<br>0<br>0 |              | ER<br>0<br>0<br>0 | ED<br>0<br>0<br>0 | ER<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | ER 0 0 0 0                               | ED<br>0<br>0<br>0 |  |
| t<br>No.<br>1328♂<br>1329♂<br>1330♂<br>1331♀<br>1332♀ | ER 2A* 0 0 0 0 | ED 0 0 0 0 0 0                        | ER 0 0 0 0 0 0 0 | ED 0 0 0 0 0 0    | ER 2 3 3 3 3 3 3 | ED 0 2 2 2 2 3 3  | ER 0 0 0 0 0                                | ED 0 0 0 0 0 0 | Sit ER O O O O      |              | ER 0 0 0 0 0 0    | ED 0 0 0 0        | ER 0 0 0 0 0 0    | ED 0 0 0 0 0     | ER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                   |  |

ER = erythema

A = 1/3 of area of test area

ED = edema

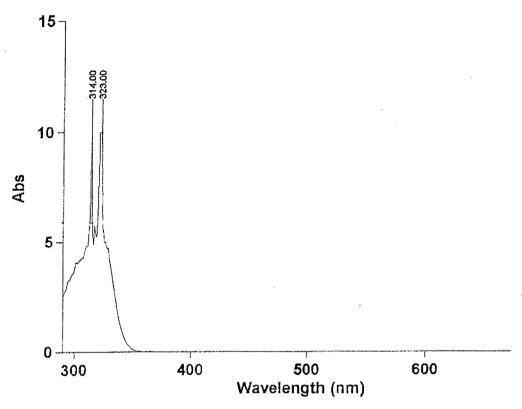
ਰੈ = Male

Sites 1 & 2 = Test article

♀ Female

Sites 3 & 4 = Vehicle

Sites 1, 3, 5 and 7 (left side) irradiated after treatment Sites 2, 4, 6 and 8 (right side) irradiated prior to treatment


Sites 5 & 6 = Positive control (8-MOP)

Sites 7 & 8 = Untreated

The control groups used in the study are inadequate. The Sponsor conducted the study with an untreated control and an ethanol control. No placebo peel was included, therefore, it is difficult to determine if the one reaction was a result of the active ingredients or the peel components themselves. A more adequately designed study should have included sites that were treated with drug only (no light), vehicle (with and without light) or light only. The group in the study that was irradiated and then had the S-Caine™ Peel applied is an inadequate control because if the drug has any anti-inflammatory effect it might mask the erythema and edema even when applied after the light.

<sup>\*</sup>This score is attributed to mechanical damage occurring during test material removal after treatment and light exposure. Difficulty was experienced in test article removal in all six animals after treatment (test article/light exposure).

The absorption spectrum received from the Sponsor (below) indicates that the peel absorbs light  $\sim$ 312-314 nm range.



The Sponsor indicates that no phototoxicity was conducted with the S-Caine<sup>TM</sup> Peel placebo. In this light, it is difficult to determine if the reaction was a result of components in the peel or a result of the active components.

The affect of the peel on the stratum corneum is unknown, but according to the Sponsor there is no evidence that layers of the epithelium are removed when then peel is removed.

#### 2.6.6.9 Discussion and Conclusions:

The sponsor conducted a standard fertility and reproductive toxicity and a pre- and postnatal development study in rats with tetracaine base at doses up to 7.5 mg/kg. Clinical observations in both studies were decreased activity, prostration, rapid breathing, and scabs at the injection site at a dose of 7.5 mg/kg. In the pre- and postnatal development study, 3 dams (2 dams at a dose of 2.5 mg/kg, 1 dam at a dose of 7.5 mg/kg) were found dead during gestation. The cause of death in these three animals is not known, however, due to the lack of a clear dose-relationship, these deaths do not appear to be attributable to the tetracaine. Body weight gains were decreased in the fertility study in male rats at a dose of 7.5 mg/kg during the entire treatment period, decreased in female rats in all treated groups during premating, and at a dose of 7.5 mg/kg during GD0-7. Body weight gains were also decreased in the pre- and postnatal development study during gestation at a dose of 7.5 mg/kg and in

Reviewer: R. Daniel Mellon, Ph.D.

all treated groups during LD0-4. There were no affects of tetracaine base on male or female fertility or pre- and postnatal development.

S-Caine<sup>TM</sup> Peel (7% lidocaine, 7% tetracaine) was found to produce mild irritation in rabbits, but did not cause any irritation in neonatal piglets. In all animal species examined lidocaine > tetracaine for exposure and there was a delay in  $T_{max}$  due to a re-distribution from the skin to the systemic exposure after peel removal.

Experimental shortcomings in the phototoxicity study make it difficult to interpret, but 1 out of 4 sites that were irradiated after peel application showed well-defined/moderately severe erythema and slight-moderate edema. The results of the test indicate a possibility of a phototoxic reaction if treated skin is exposed to sun light as the absorption spectrum indicates S-Caine™ Peel absorbs light in the 312-314 nm range.

#### 2.6.6.10 Tables and Figures:

Not applicable.

#### 2.6.7 TOXICOLOGY TABULATED SUMMARY

Not applicable.

#### OVERALL CONCLUSIONS AND RECOMMENDATIONS

<u>Unresolved toxicology issues:</u> There are two unresolved issues which are discussed below:

- 1) In light of the problems with the current phototoxicity study regarding the lack of appropriate controls, the unknown affect of the peel on the stratum corneum, and the observation that human subjects in the clinical trials that lidocaine may be present in the body for up to 24 hrs (no data are available for tetracaine as it was not detected) there is a safety concern regarding the possible photo-irritation at the application site. It is unclear if the stratum corneum is removed when the peel is removed, although the Sponsor indicates that there is no evidence from the clinical trials that it is removed. It should be noted that a specific study was not conducted to address the removal of the stratum corneum when the peel is removed. In this light, if the stratum corneum is removed, either partially or completely, then it is probable that the skin with be sensitive to sun, not as a result of the drug's light absorption or photochemical properties, but as a result of physical disruption of the skin's integrity. This concern regarding photo-irritation can be adequately addressed in product labeling and will not require any further non-clinical testing.
- 2) Eye irritation was not assessed in non-clinical or clinical trials. While there is no indication that the components or active ingredients, lidocaine and tetracaine, of the S-Caine™ Peel cause eye irritation, the potential of the active ingredients, lidocaine and tetracaine, to anesthetize the eyelid is highly likely if they are contacted by the S-Caine™ Peel. This concern regarding eye toxicity can be adequately addressed in

product labeling and will not require any further non-clinical testing. The Sponsor in their proposed label.

Recommendations: The NDA may be approved with minor alterations to the proposed label.

Suggested labeling: NOTE: The multiples of exposure that are included in the label are low because many of the doses utilized in the non-clinical studies were below the doses topically administered in humans when comparing the surface area and exposed area (cm²). However, the low multiples of exposure do not offer a significant safety risk with S-Caine Peel because there is low or no systemic exposure of lidocaine and tetracaine after dermal application. A non-teratogenic effects section was added to the label following receipt of a consult for the Pregnancy Labeling Team (PLT). The articles cited by the PLT were reviewed and the section appropriately revised to provide more details on the reported findings to assistant in future labeling of the current and future products. The proposed labeling received from the sponsor was identical to the approved Synera<sup>TM</sup> labeling. However, the multiples of exposure for the S-Caine Peel are not the same as those of the S-Caine Patch (Synera<sup>TM</sup>) and therefore must be updated for this drug product. The Sponsor's proposed labeling is reproduced below:

(Note: strike-through indicates corrections to proposed label, blue text indicate insertions/edits to the proposed label):

| Proposed Labeling (EDR May 25, 2006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reviewer Comments / Recommendations                                                              |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|
| PRECAUTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The following text should be included in the precautions section of the label:                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |  |  |  |  |
| Carcinogenesis, Mutagenesis, Impairment of Fertility:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                  |  |  |  |  |
| Carcinogenesis: Long-term studies in animals have not been performed to evaluate the carcinogenic potential of either lidocaine or tetracaine.                                                                                                                                                                                                                                                                                                                                                                                                                                           | No changes are required.                                                                         |  |  |  |  |
| Mutagenesis: The mutagenic potential of lidocaine base and tetracaine base has been determined in the in vitro Ames Bacterial Reverse Mutation Assay, the in vitro chromosome aberration assay using Chinese hamster ovary cells, and the in vivo mouse micronucleus assay. Lidocaine was negative in all three assays. Tetracaine was negative in the in vitro Ames assay and the in vivo mouse micronucleus assay. In the in vitro chromosome aberration assay, tetracaine was negative in the absence of metabolic activation, and equivocal in the presence of metabolic activation. | Comment: The text is identical to the approved Synera product labeling. No changes are required. |  |  |  |  |

# \_\_\_\_\_\_\_ Page(s) Withheld

\_\_\_\_\_ § 552(b)(4) Trade Secret / Confidential

\_\_\_\_\_\_ § 552(b)(4) Draft Labeling

§ 552(b)(5) Deliberative Process

Reviewer Signature: R. Daniel Mellon, Ph.D.

Pharmacology Toxicology Supervisor, DAARP

#### APPENDIX/ATTACHMENTS

## Reference List

Alexson SE, Diczfalusy M, Halldin M and Swedmark S (2002) Involvement of liver carboxylesterases in the in vitro metabolism of lidocaine. *Drug Metab Dispos* **30**:643-647.

de Jong RH and Bonin JD (1980) Deaths from local anesthetic-induced convulsions in mice. *Anesth Analg* **59**:401-405.

Elvin AT, Cole AF, Pieper JA, Rolbin SH and Lalka D (1981) Effect of food on lidocaine kinetics: mechanism of food-related alteration in high intrinsic clearance drug elimination. *Clin Pharmacol Ther* **30**:455-460.

Fujinaga M and Mazze RI (1986) Reproductive and teratogenic effects of lidocaine in Sprague-Dawley rats. *Anesthesiology* **65**:626-632.

Hino Y, Inoue H, Kudo K, Nishida N and Ikeda N (2001) Distribution of tetracaine and its metabolite in rabbits after high versus normal spinal anesthesia. *Forensic Sci Int* **124**:130-136.

Moore PA (1999) Adverse drug interactions in dental practice: interactions associated with local anesthetics, sedatives and anxiolytics. Part IV of a series. *J Am Dent Assoc* 130:541-554.

National Toxicology Program (1990) NTP Toxicology and Carcinogenesis Studies of 2,6-Xylidine (2,6-Dimethylaniline) (CAS No. 87-62-7) in Charles River CD Rats (Feed Studies). *Natl Toxicol Program Tech Rep Ser* **278**:1-138.

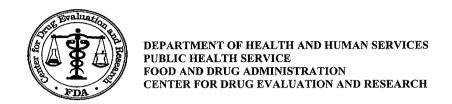
Rowland M, Thomson PD, Guichard A and Melmon KL (1971) Disposition kinetics of lidocaine in normal subjects. *Ann N Y Acad Sci* **179**:383-398.

Smith RF, Kurkjian MF, Mattran KM and Kurtz SL (1989) Behavioral effects of prenatal exposure to lidocaine in the rat: effects of dosage and of gestational age at administration. *Neurotoxicol Teratol* 11:395-403.

Smith RF, Wharton GG, Kurtz SL, Mattran KM and Hollenbeck AR (1986) Behavioral effects of mid-pregnancy administration of lidocaine and mepivacaine in the rat. *Neurobehav Toxicol Teratol* 8:61-68.

Thomson PD, Rowland M and Melmon KL (1971) The influence of heart failure, liver disease, and renal failure on the disposition of lidocaine in man. Am Heart J 82:417-421.

Wilcox KM, Rowlett JK, Paul IA, Ordway GA and Woolverton WL (2000) On the relationship between the dopamine transporter and the reinforcing effects of local anesthetics in rhesus monkeys: practical and theoretical concerns. *Psychopharmacology (Berl)* **153**:139-147.


Zito RA and Reid PR (1981) Lidocaine kinetics: relationships between early lidocaine kinetics and indocyanine green clearance. *J Clin Pharmacol* **21**:100-105.

APPEARS THIS WAY
ON ORIGINAL

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

R. Daniel Mellon 6/14/2006 11:33:07 PM PHARMACOLOGIST Pharmacology Toxicology Supervisor, DAARP



# PHARMACOLOGY/TOXICOLOGY REVIEW AND EVALUATION

NDA NUMBER: 21-717

SERIAL NUMBER: N000

DATE RECEIVED BY CENTER: 11/17/2003

DRUG NAME: 7% lidocaine/7% tetracaine (S-Caine™ peel)

INDICATION: local dermal anesthesia on intact skin

SPONSOR: Zars, Inc.

DOCUMENTS REVIEWED: 18 of 102 volumes

REVIEW DIVISION: Division of Anesthetic, Critical Care, and

**Addiction Drug Products (HFD-170)** 

PHARM/TOX REVIEWER: Suzanne R. Thornton-Jones, Ph.D.

PHARM/TOX SUPERVISOR: R. Daniel Mellon, Ph.D.

DIVISION DIRECTOR: **Bob Rappaport, M.D.** 

PROJECT MANAGER: Pratibha Rana

Date of review submission to Division File System (DFS): 03 September 2004

#### **EXECUTIVE SUMMARY**

#### I. Recommendations

- A. Recommendation on acceptability.

  The NDA can be <u>approved</u> from a pharmacology/toxicology perspective.
- B. Recommendation for nonclinical studies. None.
- C. Recommendations on labeling.

Note: The multiples of exposure that are included in the label are low because many of the doses utilized in the non-clinical studies were below the doses topically administered in humans when comparing the surface area and exposed area (cm²). However, the low multiples of exposure do not offer a significant safety risk with TetraPeel because there is low or no systemic exposure of lidocaine and tetracaine after dermal application. A non-teratogenic effects section was added to the label following receipt of a consult for the Pregnancy Labeling Team (PLT). The articles cited by the PLT were reviewed and the section appropriately revised to provide more details on the reported findings to assistant in future labeling of the current and future products.

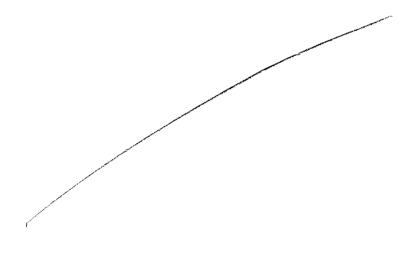
#### **PRECAUTIONS**

## Carcinogenesis, Mutagenesis, Impairment of Fertility:

Carcinogenesis: Long-term studies in animals have not been performed to evaluate the carcinogenic potential of either lidocaine or tetracaine.

**Mutagenesis**: The mutagenic potential of lidocaine base and tetracaine base has been determined in the *in vitro* Ames Bacterial Reverse Mutation Assay, the *in vitro* chromosomal aberration assay using Chinese hamster ovary cells, and the *in vivo* mouse micronucleus test. Lidocaine was negative in all three assays. Tetracaine was negative in the *in vitro* Ames and the *in vivo* mouse micronucleus assays. In the *in vitro* chromosomal aberration assay tetracaine was negative in the absence of metabolic activation, and equivocal in the presence of metabolic activation.

Impairment of Fertility: Lidocaine did not affect fertility in female rats when




Use in Pregnancy:

Teratogenic Effects: Pregnancy Category B. Lidocaine was not



Nonteratogenic Effects. Lidocaine, contained 1:100.000 eninenhrine at a



# II. Summary of nonclinical findings

#### A. Brief overview of nonclinical findings

No affects of tetracaine base on male or female fertility or pre- and postnatal development were observed. S-Caine<sup>TM</sup> Peel (7% lidocaine, 7% tetracaine) was found to produce mild irritation in rabbits, but did not cause any irritation in neonatal piglets. In all animal species examined lidocaine > tetracaine for exposure and there was a delay in  $T_{max}$  due to a re-distribution from the skin to the systemic exposure after peel removal. Experimental shortcomings in the

phototoxicity study make it difficult to interpret, but 1 out of 4 sites that were irradiated after peel application showed well-defined/moderately severe erythema and slight-moderate edema. The results of the test indicate a possibility of a phototoxic reaction if the treated skin is exposed to sun light as the absorption spectrum indicates S-Caine™ Peel absorbs light in the 312-314 nm range.

# B. Pharmacologic activity

Both lidocaine (amide-linked) and tetracaine (para-aminobenzoic acid ester) are local anesthetics which have similar pharmacological profiles and are about equipotent. Local anesthetics block nerve impulses by decreasing or preventing the large transient increase in the permeability of excitable membranes to Na+that normally is produced by a slight depolarization of the membrane due to direct interaction with voltage-gated Na+ channels. Blockade of neuronal conduction prevents the action potential of sensory neurons and therefore blocks the transmission of pain signals to the CNS. Lidocaine and tetracaine blockade demonstrates both frequency and voltage-dependency. Both drugs block both open and inactivated Na+ channels.

# C. Nonclinical safety issues relevant to clinical use

In light of the problems with the current phototoxicity study regarding the lack of appropriate controls, the unknown affect of the peel on the stratum corneum, and the observation that human subjects in the clinical trials that lidocaine may be present in the body for up to 24 hrs (no data is available for tetracaine as it was not detected) there is a safety concern regarding the possible photo-irritation at the application site. It is unclear if the stratum corneum is removed when the peel is removed, although the Sponsor indicates that there is no evidence from the clinical trials that it is removed. It should be noted that a specific study was not conducted to address the removal of the stratum corneum when the peel is removed. In this light, if the stratum corneum is removed, either partially or completely, then it is probable that the skin with be sensitive to sun, not as a result of the drug's light absorption or photochemical properties, but as a result of physical disruption of the skin's integrity. This concern of photo-irritation can be adequately addressed in product labeling and will not require any further nonclinical testing. Eye irritation is also a concern and it can be handled in the label. The Sponsor in their proposed label.

| Reviewer Signature   | Suzanne R. Inornton-Jones, Ph.D. |                      |  |
|----------------------|----------------------------------|----------------------|--|
| Supervisor Signature | R. Daniel Mellon, Ph.D.          | Concurrence Yes X No |  |

# TABLE OF CONTENTS

|        | HARMACOLOGY/TOXICOLOGY REVIEW                                    |    |
|--------|------------------------------------------------------------------|----|
|        | INTRODUCTION AND DRUG HISTORY                                    |    |
| 2.6.2  | PHARMACOLOGY:                                                    | 9  |
| 2.6.3  | PHARMACOLOGY TABULATED SUMMARY:                                  | 9  |
| 2.6.4  | PHARMACOKINETICS/TOXICOKINETICS:                                 | 9  |
| 2.6.6  | TOXICOLOGY                                                       | 9  |
| 2.6.6. |                                                                  |    |
| 2.6.6. |                                                                  |    |
| 2.6.6. |                                                                  |    |
| 2.6.6. |                                                                  |    |
| 2.6.6. |                                                                  |    |
| 2.6.6. |                                                                  | 10 |
| 2.6.6. |                                                                  | 15 |
| 2.6.6. | · · · · · · · · · · · · · · · · · · ·                            | 20 |
| 2.6.6. |                                                                  |    |
| 2.6.6. | 10 Tables and Figures:                                           | 24 |
|        | TOXICOLOGY TABULATED SUMMARY:ALL CONCLUSIONS AND RECOMMENDATIONS |    |

## 2.6 PHARMACOLOGY/TOXICOLOGY REVIEW

#### 2.6.1 INTRODUCTION AND DRUG HISTORY

**NDA NUMBER**: 21-717

REVIEW NUMBER: 1

SEQUENCE NUMBER/DATE/TYPE OF SUBMISSION: N000/17 November 2003/AZ

INFORMATION TO SPONSOR: Yes () No (X)
SPONSOR: Zars, Inc.

1142 West 2320 Soute, Suite A Salt Lake City, UT 84119

MANUFACTURER FOR DRUG SUBSTANCE: [lidocaine]

[tetracaine]

REVIEWER NAME: Suzanne R. Thornton-Jones, Ph.D.

DIVISION NAME: DACCADP

**HFD** #: 170

REVIEW COMPLETION DATE: 26 August 2004

DRUG:

TRADE NAME: S-Caine<sup>TM</sup> Peel
GENERIC NAME (LIST ALPHABETICALLY): lidocaine/tetracaine

CODE NAME: NA

**CHEMICAL NAME:** 

[lidocaine] 2-(Diethylamino)-N-(2,6-dimethylphenyl)-acetamide [tetracaine] 2-(Dimethylamino)ethyl p-(butylamino)benzoate

CAS REGISTRY NUMBER: [lidocaine] 137-58-6

[tetracaine] 94-24-6

MOLE FILE NUMBER: not specified

MOLECULAR FORMULA/MOLECULAR WEIGHT:

[lidocaine]  $C_{14}H_{22}N_2O/234.3$  [tetracaine]  $C_{15}H_{24}N_2O_2/264.41$ 

STRUCTURE:

Lidocaine Tetracaine

RELEVANT INDS/NDAS/DMFs: IND 58,823/NDA 21-623 (S-Caine Patch)

IND 59,801 (S-Caine<sup>TM</sup> Peel)

**D**RUG CLASS: Local anesthetics of the amide type

(lidocaine) and ester type (tetracaine).

INTENDED CLINICAL POPULATION:

local dermal anesthesia on intact skin

**ROUTE OF ADMINISTRATION:** 

topical

#### FORMULATION:

| Component                                 | Function                 |
|-------------------------------------------|--------------------------|
| Lidocaine, USP                            | Active, Anesthetic Agent |
| Tetracaine, USP                           | Active, Anesthetic Agent |
| Dibasic Calcium Phosphate, Anhydrous, USP |                          |
| Purified Water, USP                       |                          |
| Polyvinyl Alcohol, USP                    |                          |
|                                           |                          |
| — Petrolatum, USP                         |                          |
| Sorbitan Monopalmitate, NF (              |                          |
| Methylparaben, NF                         | /.                       |
| Propylparaben, NF                         | •                        |

The excipients in the above formulation can be found in approved drug products at equal or greater levels and therefore do not pose any unique toxicological concerns.

BACKGROUND: The Sponsor has submitted a 505(b)(2) NDA application for S-Caine™ Peel which is a 1:1 eutectic mixture of lidocaine and tetracaine. The majority of the information to support this NDA is derived from the Sponsor's for S-Caine™ Patch NDA (21-623). In the current NDA the Sponsor submitted analytical data for toxicokinetic analyses, Fertilty/Reproduction and Pre- and postnatal development reproductive toxicity studies for tetracaine base, and dermal irritation and absorption studies for the S-Caine™ Peel. As previously agreed the Sponsor has referenced the 28-day dermal toxicity study with the S-Caine™ Patch in rabbits to support the S-Caine™ Peel. The 28-day study was previously reviewed under the S-Caine™ Patch NDA and findings included skin irritation, histological changes of epidermal surface exudates, epidermal necrosis, acute dermatitis, trace to moderate epithelial hyperplasia and fibrosis of the dermis, but no difference in gender, abraded or non-abraded sites for exposure.

| Two   | degradation products are fou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and in the S-Caine™ Peel,                                                                                      |                                                               |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The Sponsor has                                                                                                | s established specifications                                  |
| of ·  | THE RESIDENCE TO SERVICE TO SERVI | respectively. Tetracaine                                                                                       | in vivo is metabolized via                                    |
| estab | olysis by plasma esterases to<br>dished for these degradation pro<br>tetracaine is administered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oducts are below the levels no                                                                                 | rmally found in the plasma                                    |
| S-Ca  | ine™ Patch NDA. It should al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | so be noted that the Sponsor                                                                                   | englandoutanisti de de la |
|       | And the state of t | as the All Companies Administrated in Section Companies (All Companies Companies Companies Companies Companies | There are no                                                  |
| toxic | ology issues with the establishe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ed specifications for these degree                                                                             | adation products.                                             |

**Disclaimer**: Tabular and graphical information are constructed by the reviewer unless cited otherwise.

**Data reliance**: Except as specifically identified below, all data and information discussed below and necessary for approval of NDA 21-717 are owned by Astra Zeneca or are data for which Zars, Inc. has obtained a written right of reference. Any information or data necessary for approval of NDA 21-717 that Zars, Inc. does not own or have a written right to reference constitutes one of the following: (1) published literature, or (2) a prior FDA finding of safety or effectiveness for a listed drug, as described in the drug's approved labeling. Any data or information described or referenced below from a previously approved application that Zars, Inc. does not own (or from FDA reviews or summaries of a previously approved application) is for descriptive purposes only and is not relied upon for approval of NDA 21-717.

#### Studies reviewed within this submission:

| Study Title                                              | Study no.    | Volume | Page   |
|----------------------------------------------------------|--------------|--------|--------|
| Report for study: 30G-1PA final report,                  | X91313G      | 9      | 9-3    |
| sample analysis of tetracaine and lidocaine in rabbit    |              |        |        |
| plasma by gas chromatography with nitrogen               |              |        |        |
| phosphorus detection                                     |              |        |        |
| Analysis of tetracaine and lidocaine in rabbit plasma    | 67GC         | 9      | 9-23   |
| by LC/MS/MS                                              |              |        |        |
| Analysis of tetracaine and lidocaine in porcine plasma   | 68G-1P       | 9      | 9-86   |
| by LC/MS/MS                                              |              |        |        |
| Final report for analysis of lidocaine in rat plasma by  | 67G-1P       | 9      | 9-190  |
| LC/MS/MS                                                 |              |        |        |
| Final report for analysis of lidocaine in rat plasma by  | 68GB         | 10     | 10-1   |
| LS/MS/MS                                                 |              |        |        |
| Final report for analysis of tetracaine and lidocaine in | 67GB         | 10     | 10-81  |
| rabbit plasma by LC/MS/MS                                |              |        |        |
| Method validation report, analytical method GL-LID-      |              | 10     | 10-181 |
| 01, lidocaine and tetracaine in human plasma by          |              |        |        |
| LC/MS/MS                                                 |              |        |        |
| A dermal irritation study of S-Caine™ Peel (lidocaine    | 925-018      | 14     | 14-1   |
| 7% and tetracaine 7% cream) in rabbits                   |              |        |        |
| Modified primary dermal irritation                       | X9L313G      | 14     | 14-64  |
| Toxicokinetic report for modified primary dermal         | X9L313G      | 14     | 14-80  |
| irritation test                                          |              |        |        |
| Dermal absorption and dermal irritation study of S-      | 925-005      | 14     | 14-89  |
| Caine ™ Peel (lidocaine 7% and tetracaine 7% cream)      |              |        |        |
| in neonatal piglets                                      |              |        |        |
| Phototoxicity test in rabbits                            | 0432LZ03.001 | 14     | 14-190 |
| A study to assess the effects of fertility and early     | 925-014      | 17     | 17-1   |
| embryonic development to implantation in rats            |              |        |        |
| Study for toxic effects on pre- and postnatal            | 925-017      | 22     | 22-1   |
| development, including maternal function, in rats        |              |        |        |

Studies not reviewed within this submission (previously reviewed):

| Studies not reviewed within this submission (previously reviewed).       |                 |         |  |  |  |  |
|--------------------------------------------------------------------------|-----------------|---------|--|--|--|--|
| Study Title                                                              | Study no.       | NDA/IND |  |  |  |  |
| Acute Toxicology/Dermal Irritation                                       |                 |         |  |  |  |  |
| Modified Primary Skin Irritation (Rabbits).                              | X9C009G         | N21-623 |  |  |  |  |
| A dermal irritation study of S-Caine™ Patch in rabbits                   | 925-002         | N21-623 |  |  |  |  |
| Dermal Sensitization – Buehler Method                                    | X9C010G         | 158,823 |  |  |  |  |
| Repeat Dose Toxicology                                                   |                 |         |  |  |  |  |
| A 28 day dermal toxicity study of S-Caine <sup>TM</sup> Patch in rabbits | 925-004         | N21-623 |  |  |  |  |
| Genotoxicity                                                             |                 |         |  |  |  |  |
| Salmonella-Escherichia coli mammalian-microsome reverse                  | 23840-0-409OECD | N21-623 |  |  |  |  |
| mutation assay with a confirmatory assay with lidocaine base             |                 |         |  |  |  |  |
| Salmonella-Escherichia coli mammalian-microsome reverse                  | 23841-0-409OECD | N21-623 |  |  |  |  |
| mutation assay with a confirmatory assay with tetracaine base            |                 |         |  |  |  |  |
| Chromosomal aberrations in Chinese Hamster Ovary (CHO)                   | 23840-0-437OECD | N21-623 |  |  |  |  |
| cells with lidocaine base                                                |                 |         |  |  |  |  |
| Chromosomal aberrations in Chinese Hamster Ovary (CHO)                   | 23841-0-437OECD | N21-623 |  |  |  |  |
| cells with tetracaine base                                               |                 |         |  |  |  |  |
| In vivo mouse micronucleus assay with lidocaine base                     | 23840-0-455OECD | N21-623 |  |  |  |  |
| In vivo mouse micronucleus assay with tetracaine base                    | 23841-0-455OECD | N21-623 |  |  |  |  |
| Reproductive Toxicology                                                  |                 |         |  |  |  |  |
| Pilot Study for effects on embryo-fetal development in rats              | 925-012         | N21-623 |  |  |  |  |
| Pilot prenatal development toxicity study in New Zealand                 | 925-013         | N21-623 |  |  |  |  |
| white rabbits                                                            |                 |         |  |  |  |  |
| Final toxicology report for study 925-015, Study for effects on          | 925-015         | N21-623 |  |  |  |  |
| embryo-fetal development in rats                                         |                 |         |  |  |  |  |
| Final toxicology report for study 925-016; Study for effects on          | 925-016         | N21-623 |  |  |  |  |
| embryo-fetal development in rabbits                                      |                 |         |  |  |  |  |

- **2.6.2 PHARMACOLOGY:** No new studies were submitted.
- 2.6.3 PHARMACOLOGY TABULATED SUMMARY: No new studies were submitted.
- **2.6.4 PHARMACOKINETICS/TOXICOKINETICS:** No new studies were submitted.

#### 2.6.6 TOXICOLOGY

#### 2.6.6.1 Overall toxicology summary

General toxicology: No new studies were submitted for review.

Genetic toxicology: The genotoxic potential of lidocaine base and tetracaine base were determined in the *in vitro* Ames Bacterial Reverse Mutation Assay, the *in vitro* chromosome aberration assay using Chinese hamster ovary cells, and the *in vivo* mouse micronucleus assay. Lidocaine was negative in all three assays. Tetracaine was negative in the *in vitro* Ames assay and the *in vivo* mouse micronucleus assay. Tetracaine was negative in the absence of metabolic activation in the *in vitro* CHO chromosomal aberration assay, and equivocal in the presence of metabolic activation.

Carcinogenicity: No new studies were submitted for review.

Reproductive toxicology: Tetracaine base did affect male or female fertility or preand postnatal development in rats when administered s.c. up to a dose of 2.5 mg/kg/day.

Special toxicology: S-Caine™ Peel was mildly irritating to rabbits. Experimental shortcomings in the phototoxicity study make it difficult to interpret, but 1 out of 4 sites that were irradiated after peel application showed well-defined/moderately severe erythema and slight-moderate edema. The results of the test indicate a possibility of a phototoxic reaction if the treated skin is exposed to sun light and the absorption spectrum indicates S-Caine™ Peel absorbs light in the 312-314 nm range.

**2.6.6.2 Single-dose toxicity:** No new studies were submitted for review.

**2.6.6.3 Repeat-dose toxicity:** No new studies were submitted for review.

**2.6.6.4 Genetic toxicology:** No new studies were submitted for review.

**2.6.6.5 Carcinogenicity:** No new studies were submitted for review.

#### 2.6.6.6 Reproductive and developmental toxicology:

# <u>A. Study Title:</u> A study to assess the effects of fertility and early embryonic development to implantation in rats.

<u>Key study findings:</u> Tetracaine base administration to both the male and female rat resulted in the following key findings:

- <u>Clinical observations</u>: decreased activity, prostration, rapid breathing, and scabs at injection site in male and female rats at a dose of 7.5 mg/kg
- <u>Body weight gains:</u> decreased in male rats at a dose of 7.5 mg/kg during the entire treatment period; decreased in female rats in all treated groups during premating, and at a dose of 7.5 mg/kg during GD 0-7
- Organ weights: decrease in prostate weights and an increase in ovary weights at a dose of 7.5 mg/kg
- No effect on male or female fertility when tetracaine base was given s.c.
- NOAEL (general)= 2.5 mg/kg/day for male and female rats (based on observations and body weight gains)
- NOAEL (fertility)=7.5 mg/kg/day for male and female rats

Study no: 925-014

Volume #, and page #: 17, pp. 17-1 Conducting laboratory and location: Date of study initiation: 28 March 2003 GLP compliance/QA report: Yes (X) No () <u>Drug, lot #, radiolabel, and % purity:</u> tetracaine base/Z-02-003/purity not specified on CoA <u>Formulation/vehicle:</u> sterile water containing NaH<sub>2</sub>PO<sub>4</sub> and Na<sub>2</sub>HPO<sub>4</sub>

#### Methods:

Indices

Species/strain: Sprague Dawley rats — CD(SD)IGS BR,

Doses employed: 0.75, 2.5, 7.5 mg/kg/day @ 1 mL/kg

<u>Route of administration:</u> s.c. (injections alternated between right and left shoulder and lumbar regions)

<u>Study design:</u> daily dosing, [males] 28 days premating, 14-21 days mating, through GD7; [females] 14 days premating, 14-21 days mating, through GD7

Number/sex/group: 25/sex/group

<u>Parameters and endpoints evaluated:</u> [male rats] clinical observations twice daily; body weights were recorded every 3-4 days, and food consumption was recorded weekly; gross pathology, terminal body weights, testes, epididymis, seminal vesicle, and prostate organs were weighted, sperm analysis was conducted; [female rats] clinical observations twice daily, body weights and food consumption were recorded every 4 days during the pre-mating and mating periods and on GD 0, 4, 7, 10, 13; cesarean section on GD 13 with standard parameters collected, gravid uterine and ovaries/cervix were weighed

# Observation times and results:

| Observations<br>Mala and the     | Results                                                                                                                                                                                                                                                                                               |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Male <u>rats</u><br>Mortality    | All animals survived to scheduled euthanasia.                                                                                                                                                                                                                                                         |
| Clinical signs                   | Decreased activity, ataxia, prostration, rapid breathing, hair absent or sparse and scabs at the injection sites were observed at a dose of 7.5 mg/kg during the premating, mating, and postmating periods.                                                                                           |
| Body weights                     | Body weights were statistically significantly decreased (5-9%) beginning on SD22 (premating period) and continuing through postmating at a dose of 7.5 mg/kg. Also at 7.5 mg/kg body weight gains were decreased for the premating, mating, and postmating periods (14%, 30%, and 17%, respectively). |
| Food consumption                 | Statistically significantly decreased at a dose of 7.5 mg/kg during the premating period (SW3-9, 9-10%), and during the postmating period (SW 9-10, 12%).                                                                                                                                             |
| Terminal/necroscopic evaluations | Unremarkable.                                                                                                                                                                                                                                                                                         |
| Organ weights                    | Terminal body weight was statistically significantly decreased (9%) and prostate weight was decreased (13%) at a dose of 7.5 mg/kg.                                                                                                                                                                   |
| Reproductive/fertility           | Unremarkable.                                                                                                                                                                                                                                                                                         |

Sperm analysis

Unremarkable.

Female rats

Mortality One died at a dose of 7.5 mg/kg on SD16 30 mins after dosing.

Cause of death was not determined. All other animals survived to

scheduled euthanasia.

Female rats

Clinical signs Decreased activity, prostration, rapid breathing, and scabs at the

injection sites were observed at a dose of 7.5 mg/kg during the

premating, mating, and gestation periods.

Body weights Body weights were statistically significantly decreased on SD15

(premating, 4%), and on GD 7-13 (3-6%) at a dose of 7.5 mg/kg. Body weight gains were decreased during the premating period on SD4-8 in all doses (18-31%), SD11-15 at doses  $\geq$ 2.5 mg/kg (18-29%), and SD 1-15 for all doses (11-21%, statistically significant at doses  $\geq$ 2.5 mg/kg. Body weight gains were decreased at a dose of 7.5 mg/kg during GD0-4 (19%, statistically significant),

and GD4-7 (24%), GD0-7 (21%, statistically significant).

Food consumption Unremarkable during premating and gestation.

Terminal/necroscopic

evaluations

Unremarkable.

Organ weights Ovary weight was increased (43%) at a dose of 7.5 mg/kg.

Uterus/cervix weight was increased (16%) at a dose of 2.5 mg/kg.

Reproductive/fertility

Indices

Estrous cyclicity was normal for the length and number of cycles.

Unremarkable for fertility indices.

Cesarean section

data

Unremarkable.

[Note: GD = gestation day; SD=study day; SW=study week]

# **B.** Study Title: Study for toxic effects on pre- and postnatal development, including maternal function, in rats

<u>Key study findings:</u> Tetracaine base administration to the female rat from GD6 to LD20 resulted in the following key findings:

- Mortality: 2 dams at a dose of 2.5 mg/kg and 1 dam at a dose of 7.5 mg/kg during gestation
- <u>Clinical observations</u> (maternal): decreased activity, ataxia, prostration, rapid breathing, and scabs at injection site at a dose of 7.5 mg/kg

- <u>Body weight gains:</u> decreased at a dose of 7.5 mg/kg during gestation and in all treated groups during LD 0-4
- No developmental affects on offspring when tetracaine base was given s.c.
- NOAEL =  $[F_0]$  2.5 mg/kg/day (based on observations and body weight gains)  $[F_1]$  7.5 mg/kg/day

Study no: 925-017

Volume #, and page #: 22, pp. 22-1
Conducting laboratory and location:
Date of study initiation: 28 March 2003
GLP compliance/QA report: Yes (X) No ()

Drug, lot #, radiolabel, and % purity: tetracaine base/Z-02-003/purity not specified on CofA

Formulation/vehicle: sterile water containing NaH<sub>2</sub>PO<sub>4</sub> and Na<sub>2</sub>HPO<sub>4</sub>

#### Methods:

Species/strain: timed-mated Sprague Dawley rats — CD(SD)IGS BR,

Doses employed: 0.75, 2.5, 7.5 mg/kg/day @ 1 mL/kg

Route of administration: s.c. (injections alternated between right and left should and

lumbar regions)

Study design: GD6-LD20 Number/sex/group: 25/group

Parameters and endpoints evaluated: Time-mated rats were used for the study. Clinical observations (twice daily), body weight, food consumption, parturition and litter observations, culling of litters to 8/sex on LD4, pup developmental indices during lactation included static righting reflex, pinna detachment, cliff aversion, eye opening, air drop righting reflex, auditory startle (end of lactation period), and during development vaginal opening, preputial separation, motor activity (PD 35) and step-through passive avoidance (PD74-77). F1 pups were allowed to mate and a cesarean section was performed on GD13 and male animals were euthanized after completion of the cesarean section.

#### Observation times and results:

#### Observations

# Results

Mortality (maternal)

Two dams were found dead on GD 17 and 19 at a dose of 2.5 mg/kg, and 1 dam was found dead on GD17 at a dose of 7.5 mg/kg. Cause of death was not determined. All other maternal animals survived to scheduled euthanasia.

Body weights (maternal)

Body weights were unremarkable for gestation and lactation. Body weight gains were decreased on GD 6-10 (10%) and GD17-20 (12%) at a dose of 7.5 mg/kg. Body weight gains were decreased in all treated groups during LD0-4 (24-59%), and were statistically significantly decreased for the entire lactation period (LD0-21, 24%) at a dose of 0.75 mg/kg.

Food consumption (maternal)

Unremarkable during gestation and lactation.

 $\underline{\mathbf{F_0}}$ 

**In-life** observations

Dams Decreased activity, ataxia, prostration, rapid breathing, and scabs at

the injection sites were observed at a dose of 7.5 mg/kg during the gestation and lactation periods. Delivery/littering data were

unremarkable.

Offspring A low incidence of desquamation (entire body) at a dose of

7.5 mg/kg, and scabbed in all dose groups were observed.

 $\underline{\mathbf{F_0}}$ 

Terminal/necroscopic

<u>evaluations</u>

Dams Discoloration, scabs, and skin thickening were observed at a dose

of 7.5 mg/kg.

Offspring Unremarkable.

 $\mathbf{F_1}$ 

In-life observations

Male and female rats Unremarkable for observations, developmental landmarks, and

post-weaning behavioral tests. It should be noted that there were statistically significant increases in motor activity and time to achieve passive avoidance at doses  $\geq 2.5$  mg/kg. The reason for the statistical significance is that the control group animals in this study exhibited values that were outside (below) the historical control

data (HCD), while the treated group values are within HCD.

Dams Unremarkable.

**Body** weights

Male rats Unremarkable.

Female rats Unremarkable.

Terminal/necroscopic

<u>evaluations</u>

Male rats Unremarkable.

Dams Unremarkable.

[Note: GD = gestation day; LD=lactation day; PD=postnatal day]

#### 2.6.6.7 Local tolerance:

# <u>A.</u> Study title: A dermal irritation study of S-Caine™ (lidocaine 7% and tetracaine 7% cream) peel in rabbits.

#### Key study findings:

- Very slight erythema and edema with S-Caine™ Peel by 48 hrs with resolution by 72 hrs
- TK: animals were exposed to lidocaine > tetracaine with a delay in  $T_{max}$  due to a redistribution from the skin to the systemic exposure after peel removal

Study no.: 925-018

Volume #, and page #: 14, pp. 14-1 Conducting laboratory and location:

Date of study initiation: 23 July 2003

GLP compliance/QA reports: yes (X) no ( )

<u>Drug, lot #, and % purity:</u> S-Caine™ Peel (7% lidocaine, 7% tetracaine)/PE-1806 — 6 for

lidocaine, for tetracaine

Formulation/vehicle: Placebo Peel/ PE-1908; mineral oil/020269

<u>Doses</u>: 6 grams on 2 inches squared (or 30 cm²) for 2 hours applied as a single application <u>Study design</u>: Rabbits (N=3 male) were topically administered S-Caine™ Peel for 2 hrs. The peel was then removed; the area cleaned with a water and a cloth, and then dermal irritation using Draize scoring was conducted at times of 0, 24, 48, and 72 hrs. TK samples were taken at 2, 3, 6, 12, and 24 hrs after application. Body weights were recorded on SD1 and animals were euthanized 72 hrs after application.

<u>Results:</u> A 2 hour administration of S-Caine<sup>TM</sup> Peel was well tolerated. Very slight erythema was observed in both the placebo and S-Caine<sup>TM</sup> Peel groups, but the S-Caine<sup>TM</sup> Peel group also exhibited very slight edema.

|                       |               | Study interval (hrs) <sup>a</sup> |    |     |    |  |
|-----------------------|---------------|-----------------------------------|----|-----|----|--|
| Treatment             | Severity      | 0                                 | 24 | 48  | 72 |  |
| Placebo Peel          | Erythema      |                                   |    |     |    |  |
|                       | 1=very slight | 2/3                               |    |     |    |  |
| S-Caine <sup>TM</sup> | Erythema      |                                   |    |     |    |  |
| Peel                  | 1=very slight | 1/3                               |    |     |    |  |
|                       | Edema         |                                   |    |     |    |  |
|                       | 1=very slight |                                   |    | 1/3 |    |  |

<sup>&</sup>lt;sup>a</sup> number represents number affected/sample size.

<u>Toxicokinetics</u>: All plasma samples had detectable levels of lidocaine and tetracaine.  $C_{max}$  and AUC values were higher for lidocaine than tetracaine (17-fold and 14-fold, respectively), but the  $T_{max}$  was comparable (3-6 hrs).  $T_{max}$  for both lidocaine and tetracaine occurred after peel removal indicating a 're-distribution' from the skin to the systemic exposure. There was high intervariability in the  $C_{max}$  and AUC for lidocaine and tetracaine, with the highest variability being observed for tetracaine.

APPENDIX B: Pharmacokinetic Parameters for Lidocaine and Tetracaine for Individual Rabbits

|                                    | Lidocaine |        | Tetracaine |       |       |       |
|------------------------------------|-----------|--------|------------|-------|-------|-------|
| Animal No.                         | 7141      | 7142   | 7143       | 7141  | 7142  | 7143  |
| C <sub>max</sub> (ng/mL)           | 149.14    | 89.41  | 305.31     | 13.08 | 2.73  | 22.03 |
| T <sub>rnax</sub> (hr)             | 6         | 3      | 3          | 6     | 3     | 3     |
| AUC <sub>0-24</sub> (ng•hr/mL)     | 1,693     | 316    | 1,056      | 120.7 | 5.5   | 54.8  |
| Dose (mg)                          | 420       | 420    | 420        | 420   | 420   | 420   |
| NAUC <sub>0-24</sub> (ng+hr/mL/mg) | 4.03      | 0.75   | 2.51       | 0.287 | 0.013 | 0.130 |
| J-2                                | 0.9919    | 0.5436 | 1.0000     | NC    | NC    | NC    |
| ke (hr <sup>-1</sup> )             | 0.1571    | 0.0840 | 0.1443     | NC    | NC    | NC    |
| t <sub>1/2</sub> (hr)              | 4,4       | 8.2    | 4.8        | NC    | NC    | NC    |

NC = Could not be calculated by WinNonlin

Note: The values in bold italics are considered unreliable since  $r^2$  for the fit was < 0.8, and the values are not included in the mean values for  $k_e$  and  $t_{re}$ .

# B. Study title: Modified primary dermal irritation.

#### Key study findings:

- S-Caine™ Peel was mildly irritating
- TK: Rabbits were exposed to lidocaine > tetracaine with a delay in  $T_{max}$  due to a re-distribution from the skin to the systemic exposure after peel removal

Study no.: X9L313G

Volume #, and page #: 14, pp. 14-64 Conducting laboratory and location: Date of study initiation: 10 January 2000

GLP compliance/QA reports: yes (X) no ( )

Drug, lot #, and % purity: S-Caine™ Peel (7% lidocaine, 7% tetracaine)/SP 12-29-

99A/purity not specified

Formulation/vehicle: Placebo Peel/ SP 12-29-99 placebo; mineral oil

<u>Doses</u>: 6 grams on 2 inches squared (or 30 cm<sup>2</sup>) for 2 hrs applied as a single application using a hill top chamber

<u>Study design</u>: Rabbits (N=6 male) were topically administered S-Caine™ Peel for 2 hrs. The peel was then removed, the area cleaned with a water and a cloth, and then dermal irritation using Draize scoring was conducted at times of 0, 24, 48, and 72 hrs. TK samples were taken at 0, 2, and 3 hrs after application. Body weights were recorded prior to dosing.

Results: The primary irritation score (MPI) for the mineral oil, placebo peel, and S-Caine<sup>TM</sup> Peel were 0.2, 0.2, and 0.3, respectively. The MPI scores indicate that all treatments were mildly irritating to the skin, but the S-Caine<sup>TM</sup> Peel had a higher incidence of erythema than the other groups.

|                               |                          | Study interval (hrs) <sup>a</sup> |     |     |     |     |     |
|-------------------------------|--------------------------|-----------------------------------|-----|-----|-----|-----|-----|
| Treatment                     | Severity                 | 0                                 | 2   | 12  | 24  | 48  | 72  |
| Mineral oil                   | Erythema, very slight    | 3/6                               | 2/6 | 2/6 | 2/6 |     | 1/6 |
| Placebo Peel                  | Erythema,<br>very slight | 2/6                               | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 |
|                               | Edema, very slight       |                                   |     | 1/6 |     |     |     |
| S-Caine <sup>TM</sup><br>Peel | Erythema, very slight    | 4/6                               | 2/6 | 2/6 | 2/6 | 2/6 | 2/6 |

<sup>&</sup>lt;sup>a</sup> number represents number affected/sample size.

<u>Toxicokinetics:</u> The level of detection for lidocaine and tetracaine were 100 ng/mL and 5 ng/mL, respectively. All plasma samples had detectable levels of lidocaine and tetracaine.  $C_{max}$  and AUC values were higher for lidocaine than tetracaine (6.6-fold and 8-fold, respectively), but the  $T_{max}$  was comparable. One problem with the TK study is that exposure levels were only examined through 3 hrs post-dose, therefore, making it difficult to know the complete AUC and the true  $t_{1/2}$  of the drugs.

Table 2. Pharmacokinetic Parameters for Lidocaine and Tetracaine in Male Rabbits After a 2-Hour Application of S-Caine<sup>™</sup> Peel

|              |                             | Lidocaine                |                                  |                             | Tetracaine               | 3                                |
|--------------|-----------------------------|--------------------------|----------------------------------|-----------------------------|--------------------------|----------------------------------|
| Rabbit No.   | C <sub>max</sub><br>(ng/mL) | T <sub>max</sub><br>(hr) | AUC <sub>0-3</sub><br>(ng•hr/mL) | C <sub>mex</sub><br>(ng/mL) | T <sub>mex</sub><br>(hr) | AUC <sub>0-3</sub><br>(ng•hr/mL) |
| 25035        | 190                         | 3                        | 260                              | 25                          | 3                        | 33.5                             |
| 25037        | 240                         | 3                        | 315                              | 64                          | 3                        | 63.5                             |
| 25059        | 140                         | 3                        | 235                              | 29                          | 3                        | 41.5                             |
| 25060        | 170                         | 3                        | 250                              | 10                          | 3                        | 14.0                             |
| 25061        | 160                         | 3                        | 305                              | 23                          | 3                        | 44.5                             |
| 25068        | 210                         | 2                        | 400                              | 18                          | 3                        | 21.8                             |
| Mean<br>± SD | 185<br>± 36                 | 2.8<br>± 0.4             | 294<br>± 61                      | 28.2<br>± 18.7              | 3.0<br>0.0               | 36.5<br>17.6                     |

<u>C.</u> Study title: Dermal absorption and dermal irritation study of S-Caine<sup>TM</sup> Peel (lidocaine 7% and tetracaine 7% cream) in neonatal piglets.

#### Key study findings:

- No irritation was observed with S-Caine™ Peel
- TK: animals were exposed to lidocaine > tetracaine with a delay in  $T_{max}$  due to a re-distribution from the skin to the systemic exposure after peel removal

17

Study no.: 925-005

Volume #, and page #: 14, pp. 14-89 Conducting laboratory and location:

<u>Date of study initiation:</u> 06 September 2002 GLP compliance/QA reports: yes (X) no ()

Drug, lot #, and % purity: S-Caine™ Peel (7% lidocaine, 7% tetracaine)/PE-1806/ — % for

lidocaine and tetracaine

Formulation/vehicle: mineral oil/lot no. 001191

Doses: 5 grams on 100 cm<sup>2</sup> for 30 mins, 10 grams on 100 cm<sup>2</sup> for 60 mins

Study design: Neonatal piglets (N=3/sex/group) were topically administered S-Caine™ Peel as outlined above. The peel was then removed, the area cleaned with a water and a cloth, and then dermal irritation using Draize scoring was conducted at times of 1, 24, 48, and 72 hrs. TK samples were taken at 0, 30, 60, 90 mins, and 2, 4, 8, 12, and 24 hrs after application. Body weights were recorded prior to dosing, on the day of dosing, and study termination. Animals were euthanized 72 hrs after dosing and microscopic evaluation of the skin was conducted.

<u>Results:</u> No dermal irritation was observed, body weights, clinical observations, and microscopic evaluations were unremarkable.

<u>Toxicokinetics</u>: All plasma samples had detectable levels of lidocaine and tetracaine.  $C_{max}$  and AUC values were higher for lidocaine than tetracaine for all treated groups. Ratios for the 5g/30 min group for  $C_{max}$  and AUC for male piglets were 10-fold and 168-fold, respectively, and for female piglets were 81-fold and 194-fold, respectively. Female piglets had higher exposure to lidocaine and tetracaine than male piglets in the 5 g/30 min group.  $T_{max}$  for the 5g/30 min group was longer for the male piglets for lidocaine, but were comparable for tetracaine for both genders. Ratios for the 10g/60 min group for  $C_{max}$  and AUC were comparable for male and female piglets (94-98-fold and 121-148-fold, respectively).  $T_{max}$  was also comparable for the 10g/60 min group.  $T_{max}$  tended to occur after patch removal, indicated a possible depot affect in the skin or a 're-distribution' of the lidocaine and tetracaine from the skin to the whole body.  $T_{max}$  was not dependent on dose, application time, or gender.

APPEARS THIS WAY ON ORIGINAL

Tathe 2. Mear Pharmacokinetic Parameters for Necrotial Piglets Receiving S Caine <sup>IM</sup> Peel Topically

| WARRINGTON TO THE CONTROL OF THE CON |                | 482 | Kae Maks        |         | A A COMMISSION COMISSION COMMISSION COMISSION COMMISSION COMMISSION COMMISSION COMMISSION COMMISSIO | Ferrae      | Ferrale Pipels |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|-----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|--------------------------------------------------|
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |     | Telescaine      |         | Lidocaine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | wie ze jaj     | *** **                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean ±SD       | ш   | CS∓ væw         | ū       | Mean : 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u           | OS∓ DESM       | æ                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |     | Group 1: 34     | -Minule | Group 1: 30-Minule Application of 5 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                |                                                  |
| Cwx ng/mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 645 ± 219      | m   | 5.45 ± 1.56     | m       | 653 ± 243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m           | 7.26. ±1.76    | ~                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 624 439        | m   | 22 116          | n       | 20 × C*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m           | 20 × 0:        | ri)                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5,881 ± 1,914  | ריז | 900 11 m        | m       | 2697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rr)         | 393 + 136      | <i>#</i> ^                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.174 ± 0.0062 | 77) | 6.1302 ± 0.0298 | m       | 0.4254 ± 0.0208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es.         | 4,1257         | <del>*************************************</del> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.9 104        | m   | F) 11 5 5       | 177     | 77 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m           | 2              | ****                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,636 ± 1,398  | er) | 61.2 ± 3.4      | m       | \$208 ± 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 579         | 8              | <del></del>                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 % to 18      | erg | 1.35 ± 2.15     | m       | 206 1021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ניז         | 2.00 ±0.21     | F73                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 * Xc        | m)  | 233 + 252       | 57.3    | 28 ± 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (K)         | 3.61 = 1.23    | tr)                                              |
| ALC, www (me-nc'm Lag)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4524 ± 1.340   | ens | 26.9 ± 3.3      | (M.)    | 3,785 1 1.457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (#)         | .9.5 ± 10.6    | mo                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |     |                 |         | Group 2: 60-Minute Application of 10 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                | or and an order of the                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1616 + 382     | e©  | B + 2 3         | (4)     | 1,27, 1,159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er)         | 1364 ±567      | (4)                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 100         | έĞ  | 25 ± 13         | æ       | C + C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 675         | 40 104         | <i>8</i> 7)                                      |
| A.K. M. (TOPT TITLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21,550 ±6,745  | #ľ) | 124 127         | 10)     | 18.57 2.5.3K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60          | 67.7 + 75.     | e's                                              |
| K III )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1185 ±0.0097 | m   | 9.1432 ±0.9405  | Ø       | 21158 = 0.0534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | im          | 888.0          | rv:                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.5 ±06        | m   | *** ***         | m       | 07. 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>6</b> 77 | 50 %           | N                                                |
| AUC, Ingentie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24,051 ± 7,540 | m   | 1514 ±398       | (43     | 21,033 ± 6,894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (**)        | 41 0           | N                                                |
| Weignt Par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 203 ±0.16      | m   | 262 16.1        | m       | 157 ±0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | es          | C: 07 657      | m                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 762 ± 136      | m   | X:+ 38          | 1977    | 86 * 876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m           | E-20 + 2.31    | m                                                |
| ALC: AWING-THINKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m422 = 2,570   | m   | 74.5.16.7       | m       | 3,417 ± 2,378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r j         | 577 T 374      | m                                                |

Note: Standard deviations were not calculated form < 3.

# 2.6.6.8 Special toxicology studies:

# A. Study title: Phototoxicity tests in rabbits.

#### Key study findings:

• Adequacy of the study is questionable as inadequate control groups

• However, 1 out of 4 sites that were irradiated after S-Caine Peel application showed well-defined/moderately severe erythema and slight-moderate edema

Study no.: 0432LZ03.001

Volume #, and page #: 14, 14-190
Conducting laboratory and location:
Date of study initiation: 24 October 2003

GLP compliance/OA reports: yes (X) no ()

Drug, lot #, and % purity: S-Caine<sup>TM</sup> Peel/PE01806/ - 5 for lidocaine and tetracaine

Formulation/vehicle: NA; positive control of 0.5% 8-MOPS

Doses: 0.2 mL on 4 cm<sup>2</sup> site

Study design: Rabbits (N=3/sex/group) were used. Group 1 was treated with mineral oil, positive control, or S-Caine<sup>TM</sup> Peel for 15 mins, then the skin was irradiated at to non-erythemogenic (i.e, uV greater than 280 nm or ~163 joules,cm²) at a distance of 10 inches for 60 mins. After the irradiation, the peel was removed and Draize scoring was performed. Group 2 was irradiated for 60 mins as outlined above, the mineral oil, positive control, or S-Caine<sup>TM</sup> Peel was applied and allowed to dry for 15 mins. All treatments remained in place for 60 mins, after which they were removed and Draize scoring was performed. An untreated site was also included on each animal. Draize scoring was performed at 24, 48, 72, and 96 hrs after treatment completion.

#### Results:

One out of 4 sites that were irradiated after peel application showed well-defined/moderately severe erythema and slight-moderate edema. No other affects were observed. The adequacy of the study is questionable as there are study design confounds which include: 1) the absorption spectrum of the product is unknown; 2) the correct control groups were not included; and 3) it is unknown if the stratum corneum is affected by removal of the peel. The absorption spectrum information is important because I can not confirm that the wavelength used in the study (erythemogenic - uV greater than 280 nm or ~163 joules,cm²) is the wavelength that should have been used in the study. The wavelength to use in these studies depends on what wavelengths are absorbed by the drug. If the drug product does not absorb between 290 and 700 nm then phototoxicity is not likely to be a safety concern, but without the information on the absorption spectrum the interpretation of the study results is that S-Caine<sup>TM</sup> Peel treatment may cause irritation at the site of application if exposed to sunlight.

#### **Dermal Observations/Post Treatment**

|                                  |                         |                        |                                         |             |                  |                            |                | 24 B                  | lours          |                     | ě,           |                   |                |                                         |                                         |                  |
|----------------------------------|-------------------------|------------------------|-----------------------------------------|-------------|------------------|----------------------------|----------------|-----------------------|----------------|---------------------|--------------|-------------------|----------------|-----------------------------------------|-----------------------------------------|------------------|
| Rabbit                           | Si                      | te I                   | Si                                      | ie 3        | Si               | le 5                       | Si             | te 7                  | Si             | le 2                | Si           | e 4               | Sit            | e 6                                     | Si                                      | e 8              |
| No.                              | ER                      | ED                     | ER                                      | ED          | ER               | ED                         | ER             | ED                    | ER             | ED                  | ER           | ED                | ER             | ED                                      | ER                                      | ED               |
| 13283                            | 2*                      | 2*                     | 0                                       | 0           | 3                | 2                          | 0              | 0                     | 1*             | 0                   | 0            | 0                 | 0              | 0                                       | 0                                       | 0                |
| 1329ථ                            | 0                       | 0                      | 0                                       | 0           | 2                | 3                          | 0              | 0                     | 0              | 0                   | 0            | 0                 | 0              | 0                                       | 0                                       | 0                |
| 13303                            | 0                       | 0                      | 0                                       | 0           | 2                | 3                          | 0              | 0                     | 0              | 0                   | 0            | 0                 | 0              | 0                                       | 0                                       | 0                |
| 1331♀                            | 1*                      | 0                      | 0                                       | 0           | 3                | 3                          | 0              | 0                     | 0              | 0                   | 0            | 0                 | 0              | 0                                       | 0                                       | 0                |
| 1332♀                            | 0                       | 0                      | 0                                       | 0           | 3                | 3                          | 0              | 0                     | 0              | 0                   | 0            | 0                 | 0              | 0                                       | 0                                       | 0                |
| 1333♀                            | 0                       | 0                      | 0                                       | 0           | 3                | 3                          | 0              | 0                     | 0              | 0                   | 0            | 0                 | 0              | 0                                       | 0                                       | 0                |
| mean                             | 0.5                     | 0.3                    | 0.0                                     | 0.0         | 2.7              | 2.8                        | 0.0            | 0.0                   | 0.2            | 0.0                 | 0.0          | 0.0               | 0.0            | 0.0                                     | 0.0                                     | 0.0              |
| SD                               | 0.8                     | 0.8                    | 0.0                                     | 0.0         | 0.5              | 0.4                        | 0.0            | 0.0                   | 0.4            | 0.0                 | 0.0          | 0.0               | 0.0            | 0.0                                     | 0.0                                     | 0.0              |
|                                  |                         |                        |                                         |             |                  |                            |                |                       |                | i, C                | 100          |                   |                | 1                                       | 100                                     |                  |
|                                  |                         |                        | 4                                       |             |                  |                            |                | 48 H                  | ours           |                     |              |                   |                |                                         |                                         |                  |
| Rabbit                           | Sit                     | Site I                 |                                         | Site 3 Site |                  | e 5                        | Site 7         |                       | Sit            |                     | Sit          | أتمسا             | Sit            | 4.5                                     | Ci.                                     | e 8              |
| No.                              | ER                      |                        |                                         |             |                  |                            | ~**            |                       | 311            | F #                 | )HC          | K 4               | 5244           | Ç V                                     | 5714                                    |                  |
|                                  | EK                      | ED                     | ER                                      | ED          | ER               | ED                         | ER             | ED                    | ER             | ED                  | ER           | ED                | ER             | ED                                      | ER                                      | ED               |
| 1328റ്റ്                         | 2*                      | ED<br>l*               | ER<br>0                                 | ED<br>0     | ER<br>3          | ED<br>2                    |                |                       |                |                     |              |                   |                | *************************************** | *************************************** | ED<br>0          |
| 1328 <u>උ</u><br>1329උ           |                         |                        | *************************************** |             | <del></del>      |                            | ER             | ED                    | ER             | ED                  | ER           | ED                | ER             | ED                                      | ER                                      |                  |
|                                  | 2*                      | ]*                     | 0                                       | 0           | 3                | 2                          | ER<br>0        | ED<br>0               | ER<br>0        | ED<br>0             | ER<br>0      | ED<br>0           | ER<br>0        | ED<br>o                                 | ER<br>0                                 | 0                |
| 1329ඊ                            | 2*<br>0                 | ]*<br>0                | 0                                       | 0           | 3<br>2           | 2                          | ER<br>0<br>0   | 6<br>0                | ER<br>0<br>0   | <b>E</b> D <b>0</b> | ER<br>0<br>0 | ED<br>0<br>0      | 0<br>0         | ED<br>O<br>O                            | ER<br>0<br>0                            | 0                |
| 1329ඊ<br>1330ඊ                   | 2*<br>0<br>0            | 1*<br>0<br>0           | 0<br>0<br>0                             | 0           | 3<br>2<br>3      | 2<br>2<br>3                | ER<br>0<br>0   | 6<br>0<br>0           | ER<br>0<br>0   | €D<br>0<br>0        | ER 0 0 0     |                   | ER 0 0 0       | 田ののの                                    | ER 0 0 0                                | 0<br>0<br>0      |
| 1329♂<br>1330♂<br>1331♀          | 2*<br>0<br>0<br>1*<br>0 | 1*<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                   | 00000       | 3 3 3 3          | 2<br>3<br>2<br>3<br>2<br>3 | ER 0 0 0 0     | 6<br>0<br>0<br>0      | ER 0 0 0 0     | ED 0 0 0            | ER 0 0 0     | ED<br>0<br>0<br>0 | ER 0 0 0 0     | ED 0 0 0 0                              | ER 0 0 0 0                              | 0<br>0<br>0      |
| 1329♂<br>1330♂<br>1331♀<br>1332♀ | 2*<br>0<br>0<br>1*      | 1*<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0                   | 00000       | 3<br>2<br>3<br>3 | 2<br>2<br>3<br>2<br>3      | ER 0 0 0 0 0 0 | 6<br>0<br>0<br>0<br>0 | ER 0 0 0 0 0 0 | ED 0 0 0 0          | ER 0 0 0 0 0 | ED 0 0 0 0        | ER 0 0 0 0 0 0 | ED 0 0 0 0 0                            | ER 0 0 0 0 0 0                          | 0<br>0<br>0<br>0 |

ER = erythema

& = Male

ED = edema

Q = Female

Sites 1 & 2 - Test article

Sites 1, 3, 5 and 7 (left side) irradiated after treatment

Sites 3 & 4 = Vehicle

Sites 2, 4, 6 and 8 (right side) irradiated prior to treatment

Sites 5 & 6 = Positive control (8-MOP)

Sites 7 & 8 = Untreated

<sup>\*</sup>This score is attributed to mechanical damage occurring during test material removal after treatment and light exposure. Difficulty was experienced in test article removal in all six animals after treatment (test article/light exposure).

**Dermal Observations/Post Treatment** 

|            |        |     |        |      |        |      |        | 72°11         | our <b>s</b> |      |          |     |          |     |          |     |  |
|------------|--------|-----|--------|------|--------|------|--------|---------------|--------------|------|----------|-----|----------|-----|----------|-----|--|
| Rabbi      | Sit    | : 1 | Sil    | e 3  | Si     | e 5  | Si     | e 7           | Si           | le 2 | Sit      | e 4 | Sit      | e 6 | Sit      | e 8 |  |
| 1          |        |     |        |      |        |      |        |               |              |      | <u> </u> |     | <u> </u> |     | <u> </u> |     |  |
| No.        | ER     | ED  | ER     | ED   | ER     | ED   | ER     | ED            | ER           | ED   | ER       | ED  | ER       | ED  | ER       | ED  |  |
| 1328 ්     | 2A*    | 0   | 0      | 0    | 3      | 1    | 0      | 0             | 0            | 0    | 0        | 0   | 0        | 0   | 0        | 0   |  |
| 1329ರೆ     | 0      | 0   | 0      | 0    | 3      | 2    | 0      | 0             | 0            | 0    | 0        | 0   | 0        | 0   | 0        | 0   |  |
| 13308      | 0      | 0   | 0      | 0    | 3      | 2    | 0      | 0             | 0            | 0    | 0        | 0   | 0        | 0   | 0        | 0   |  |
| 1331♀      | 0      | 0   | 0      | 0    | 3      | 2    | 0      | 0             | 0            | 0    | 0        | 0   | 0        | 0   | 0        | 0   |  |
| 1332♀      | 0_     | 0   | 0      | 0    | 3      | 3    | 0      | 0             | 0            | 0    | 0        | 0   | 0        | 0   | 0        | 0   |  |
| 1333♀      | 0      | 0   | 0      | 0    | 3      | 2    | 0      | 0             | 0            | 0    | 0        | 0   | 0        | 0   | 0        | 0   |  |
| Mean       | 0.3    | 0.0 | 0      | 0    | 3.0    | 2.0  | 0.0    | 0,0           | 0.0          | 0.0  | 0.0      | 0.0 | 0.0      | 0.0 | 0.0      | 0.0 |  |
| SD         | 0.8    | 0.0 | 0.0    | 0.0  | 0.0    | 0.6  | 0.0    | 0.0           | 0.0          | 0.0  | 0.0      | 0.0 | 0.0      | 0.0 | 0.0      | 0.0 |  |
|            |        |     |        |      |        | din. |        | 96 <b>1</b> 1 | ours         |      |          |     |          |     |          |     |  |
| Rabbi<br>t | Site 1 |     | Site 3 |      | Site 5 |      | Site 7 |               | Site 2       |      | Site 4   |     | Site 6   |     | Site 8   |     |  |
| No.        | ER     | ED  | ER     | ED   | ER     | ED   | ER     | ED            | ER           | ED   | ER       | ED  | ER       | ED  | ER       | ED  |  |
| 1328ඊ      | 2A*    | 0   | 0      | 0    | 2      | 0    | 0      | 0             | 0            | 0    | 0        | 0   | 0        | 0   | 0        | 0   |  |
| 1329ඊ      | 0      | 0   | 0      | 0    | 3      | 2    | 0      | 0             | 0            | 0    | 0        | 0   | 0        | 0   | 0        | 0   |  |
| 1330දී     | 0      | 0   | 0      | 0    | 3      | 2    | Q      | 0             | 0            | 0    | o `      | 0   | 0        | 0   | 0        | 0   |  |
| 1331♀      | 0      | 0   | 0      | 0    | 3      | 2    | 0      | 0             | 0            | 0    | 0        | 0   | 0        | 0   | 0        | 0   |  |
| 1332♀      | 0      | 0   | 0      | 0    | 3      | 3    | 0      | 0             | 0            | 0    | 0        | 0   | 0        | 0   | 0        | 0   |  |
| 1333♀      | 0      | 0   | 0      | 0    | 3      | 2    | 0      | 0             | 0            | Ü    | 0        | 0   | 0        | 0   | 0        | 0   |  |
|            |        |     | ~ ~    | A 60 | 2.8    | 1,8  | 4 4    | ~ ^           |              |      | 20       | ~ ~ | 2.0      |     |          | 0.0 |  |
| Mean       | 0.3    | 0.0 | 0.0    | 0.0  | 4.0    | 1.0  | 0.0    | 0.0           | 0.0          | 0.0  | 0.0      | 0.0 | 0.0      | 0.0 | 0.0      | U.U |  |

ER = erythema

A = 1/3 of area of test area

ED = edema

 $\delta$  = Male Q = Female

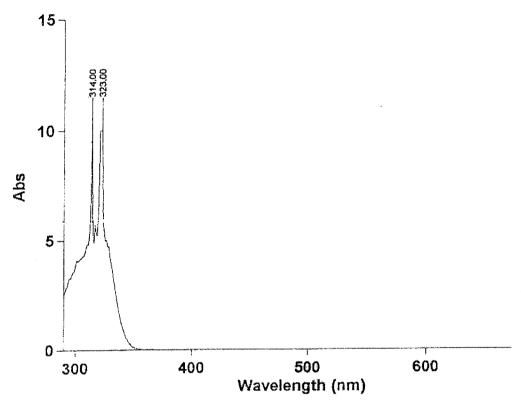
Sites 1 & 2 = Test article

Sites 1, 3, 5 and 7 (left side) irradiated after treatment

Sites 3 & 4 = Vehicle

Sites 2, 4, 6 and 8 (right side) irradiated prior to treatment

Sites 5 & 6 = Positive control (8-MOP)


Sites 7 & 8 = Untreated

The control groups used in the study are inadequate. The Sponsor conducted the study with an untreated control and an ethanol control. No placebo peel was included, therefore, it is difficult to determine if the one reaction was a result of the active ingredients or the peel components themselves. A more adequately designed study should have included sites that were treated with drug only (no light), vehicle (with and without light) or light only. The group in the study that was irradiated and then had the S-Caine™ Peel applied is an inadequate control because if the drug has any anti-inflammatory effect it might mask the erythema and edema even when applied after the light.

<sup>\*</sup>This score is attributed to mechanical damage occurring during test material removal after treatment and light exposure. Difficulty was experienced in test article removal in all six animals after treatment (test article/light exposure).

Information regarding the absorption spectrum, affect of peel removal on the stratum corneum, and phototoxicity on the placebo peel were requested from the Sponsor.

The absorption spectrum received from the Sponsor (below) indicates that the peel absorbs light  $\sim$ 312-314 nm range.



The Sponsor indicated that no phototoxicity was conducted with the S-Caine<sup>™</sup> Peel placebo. In this light, it is difficult to determine if the reaction was a result of components in the peel or a result of the active components.

The affect of the peel on the stratum corneum is unknown, but according to the Sponsor there is no evidence that layers of the epithelium are removed when then peel is removed.

#### 2.6.6.9 Discussion and Conclusions:

The sponsor conducted a standard fertility and reproductive toxicity and a pre- and postnatal development study in rats with tetracaine base at doses up to 7.5 mg/kg. Clinical observations in both studies were decreased activity, prostration, rapid breathing, and scabs at the injection site at a dose of 7.5 mg/kg. In the pre- and postnatal development study, 3 dams (2 dams at a dose of 2.5 mg/kg, 1 dam at a dose of 7.5 mg/kg) were found dead during gestation. The cause of death in these three animals is not known, however, due to the lack of a clear dose-relationship, these deaths do not appear to be attributable to the tetracaine. Body weight gains were decreased in the fertility study in male rats at a dose of 7.5 mg/kg during the entire treatment period, decreased in female rats in all treated groups during premating, and

at a dose of 7.5 mg/kg during GD 0-7. Body weight gains were also decreased in the pre- and postnatal development study during gestation at a dose of 7.5 mg/kg and in all treated groups during LD 0-4. There were no affects of tetracaine base on male or female fertility or pre- and postnatal development.

S-Caine<sup>TM</sup> Peel (7% lidocaine, 7% tetracaine) was found to produce mild irritation in rabbits, but did not cause any irritation in neonatal piglets. In all animal species examined lidocaine > tetracaine for exposure and there was a delay in  $T_{max}$  due to a re-distribution from the skin to the systemic exposure after peel removal.

Experimental shortcomings in the phototoxicity study make it difficult to interpret, but 1 out of 4 sites that were irradiated after peel application showed well-defined/moderately severe erythema and slight-moderate edema. The results of the test indicate a possibility of a phototoxic reaction if treated skin is exposed to sun light as the absorption spectrum indicates S-Caine<sup>TM</sup> Peel absorbs light in the 312-314 nm range.

**2.6.6.10 Tables and Figures:** Not applicable.

## 2.6.7 TOXICOLOGY TABULATED SUMMARY: Not applicable.

#### OVERALL CONCLUSIONS AND RECOMMENDATIONS

<u>Unresolved toxicology issues:</u> There are two unresolved issues which are discussed below:

- 1) In light of the problems with the current phototoxicity study regarding the lack of appropriate controls, the unknown affect of the peel on the stratum corneum, and the observation that human subjects in the clinical trials that lidocaine may be present in the body for up to 24 hrs (no data are available for tetracaine as it was not detected) there is a safety concern regarding the possible photo-irritation at the application site. It is unclear if the stratum corneum is removed when the peel is removed, although the Sponsor indicates that there is no evidence from the clinical trials that it is removed. It should be noted that a specific study was not conducted to address the removal of the stratum corneum when the peel is removed. In this light, if the stratum corneum is removed, either partially or completely, then it is probable that the skin with be sensitive to sun, not as a result of the drug's light absorption or photochemical properties, but as a result of physical disruption of the skin's integrity. This concern regarding photo-irritation can be adequately addressed in product labeling and will not require any further non-clinical testing.
- 2) Eye irritation was not assessed in non-clinical or clinical trials. While there is no indication that the components or active ingredients, lidocaine and tetracaine, of the S-Caine™ Peel cause eye irritation, the potential of the active ingredients, lidocaine and tetracaine, to anesthetize the eyelid is highly likely if they are contacted by the S-Caine™ Peel. This concern regarding eye toxicity can be adequately addressed in product labeling and will not require any further non-clinical testing. The Sponsor has

# 2 Page(s) Withheld

\_\_\_\_\_ § 552(b)(4) Trade Secret / Confidential

\_\_\_\_X § 552(b)(4) Draft Labeling


§ 552(b)(5) Deliberative Process

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

Suzanne Thornton-Jones 9/3/04 12:51:25 PM PHARMACOLOGIST

R. Daniel Mellon 9/3/04 01:01:32 PM PHARMACOLOGIST I concur



# ADDENDUM TO PHARMACOLOGY/TOXICOLOGY REVIEW AND EVALUATION

NDA NUMBER: 21-717

SERIAL NUMBER: N000

DATE RECEIVED BY CENTER: 11/17/2003

DRUG NAME: 7% lidocaine/7% tetracaine (S-Caine<sup>TM</sup> peel)

INDICATION: local dermal anesthesia on intact skin

SPONSOR: Zars, Inc.

DOCUMENTS REVIEWED: 18 of 102 volumes

REVIEW DIVISION: Division of Anesthetic, Critical Care, and

**Addiction Drug Products (HFD-170)** 

PHARM/TOX REVIEWER: Suzanne R. Thornton-Jones, Ph.D.

PHARM/TOX SUPERVISOR: R. Daniel Mellon, Ph.D.

DIVISION DIRECTOR: Bob Rappaport, M.D.

PROJECT MANAGER: Pratibha Rana

Date of review submission to Division File System (DFS): 10 September 2004

## **EXECUTIVE SUMMARY**

#### Recommendations

A. Recommendation on acceptability.

The NDA can be <u>approved</u> from a pharmacology/toxicology perspective with a Phase commitment.

B. Recommendation for nonclinical studies.

As previously conveyed to the Sponsor for NDA 21-623 (S-Caine<sup>TM</sup> Patch), the affect of lidocaine on male fertility has not adequately been addressed. A non-clinical study characterizing the effects of lidocaine on male fertility and early embryonic development will need to be conducted. An appropriate study design will include male rats being treated daily for at least 4 weeks prior to mating, 2 weeks of mating, and through gestation, until euthanasia. You should provide data that characterizes the effects of lidocaine treatment each of the following endpoints: 1) maturation of gametes; 2) mating behavior; 3) fertility; 4) sperm counts in epididymides or testes; 5) sperm viability, motility and morphology; 6) histopathology of male reproductive organs (epididymis, testis, seminiferous tubules); and 7) standard female reproductive data parameters.

The sponsor was informed that a male fertility and early embryonic development study for lidocaine was required for approval of the NDA 21-623 (the S-Caine Patch). I reviewed a protocol for the study and found the basic design adequate. The Division received an unaudited draft of the study report on 08 September 2004; however, formal review of the study results can not be completed prior to the planned action date of September 15, 2004. As this study has been completed and the final study report is close to finalization, and since there is low systemic absorption and exposure of lidocaine following dermal application, the male fertility study can be conducted as a Phase 4 commitment. Appropriate wording regarding the lack of information on male fertility will be added to the label until completion of the commitment.

#### Additional Recommendations on labeling.

Impairment of Fertility: Lidocaine did not affect fertility in female rats when given via

Reviewer Signature Suzanne R. Thornton-Jones, Ph.D.

Supervisor Signature R. Daniel Mellon, Ph.D.

Concurrence Yes X No \_\_\_\_

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

Suzanne Thornton-Jones 9/10/04 12:25:16 PM PHARMACOLOGIST

R. Daniel Mellon 9/10/04 02:35:13 PM PHARMACOLOGIST I concur